External Evaluation of the Technical Rapid Response Team

February-March 2018

Evaluator: Ben G Allen (independent consultant)

Consortium Partners:
Acknowledgements

This evaluation would not have been possible without the guidance and support from Andi Kendle the Tech RRT Programme Manager. Thank you to all the informants for taking the time to provide their insights and recommendations on the Tech RRT. A special thank you to Esther Busquet (CMAM/SBC Advisor) and Alessandro Iellamo (IYCF-E Advisor) for supporting the evaluator to shadow them on deployments in South Sudan. Thanks must also go to the International Medical Corps team in South Sudan for facilitating the field trip with great efficiency.

This evaluation is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of Ben Allen, the external evaluator for the Tech RRT, and do not necessarily reflect the views of USAID or the United States Government.
Table of Contents
Acknowledgements .. 2
Table of Contents ... 3
List of Figures .. 5
List of Tables .. 5
Acronyms ... 6
Executive Summary ... 7
1. Introduction .. 11
 1.1. Objectives ... 11
 1.2. Background ... 11
 1.3. The Technical Rapid Response Team .. 12
 1.4. Management of the Technical Rapid Response Team ... 14
 1.5. Overview of deployments ... 15
 1.6. Development of technical support at global level ... 16
2. Methodology .. 18
 2.1. Evaluation Scope ... 18
 2.2. Evaluation approach ... 18
 2.3. Sampling .. 19
 2.4. Limitations .. 19
 2.5. Evaluation Questions ... 20
3. Findings .. 21
 3.1. Relevance/appropriateness ... 21
 3.1.1. Thematic area ... 21
 3.1.2. Deployment work ... 22
 3.1.3. Non-Deployment work ... 29
 3.1.4. Other sectors .. 31
 3.1.5. How well known is the Tech RRT? ... 32
 3.2. Effectiveness ... 34
 3.2.1. How effective were deployments in reaching their objectives? 34
 3.2.2. Was the monitoring and evaluation plan effective in gathering information to measure the success of the project? ... 35
 3.2.3. Was the Tech RRT effective in coordinating with relevant partners/bodies? 37
 3.2.4. What real difference has the project made on humanitarian response broadly (either globally or at a country level)? ... 38
 3.3. Efficiency .. 40
 3.3.1. To what extent does this operational model facilitate rapid deployments? 40
 3.3.2. To what extent was the Tech RRT mechanism efficient in deploying advisors? 41
 3.3.3. Engagement between the Tech RRT and key stakeholders 43
 3.4. Sustainability ... 45
 3.4.1. Cost recovery ... 46
 3.4.2. Core funding .. 48
3.4.3. Tech RRT Management .. 48

4. Main findings .. 50

5. Recommendations .. 53

6. Annexes .. 57
List of Boxes

Box 1 Deployment Example ... 13
Box 2 Examples of non-deployment work done by Tech RRT Advisors 13

List of Figures

Figure 1 Number of deployments by emergency (n=31) for 2016 and 2017 16
Figure 2 Deployments (n=31) and rejected requests (n=10) (2016 and 2017) 16

List of Tables

Table 1 Length of deployments in weeks (n=31) (2016 and 2017) ... 27
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFF</td>
<td>Children's Investment Fund Foundation</td>
</tr>
<tr>
<td>CMAM</td>
<td>Community based management of acute malnutrition</td>
</tr>
<tr>
<td>DfID</td>
<td>United Kingdom Department for International Development</td>
</tr>
<tr>
<td>DSC</td>
<td>Deployment Steering Committee</td>
</tr>
<tr>
<td>ECHO</td>
<td>Directorate-General for European Civil Protection and Humanitarian Aid Operations</td>
</tr>
<tr>
<td>FLA</td>
<td>Field level agreement</td>
</tr>
<tr>
<td>GNC</td>
<td>Global Nutrition Cluster</td>
</tr>
<tr>
<td>GNC-CT</td>
<td>Global Nutrition Cluster- Coordination Team</td>
</tr>
<tr>
<td>HST</td>
<td>Humanitarian Support Team</td>
</tr>
<tr>
<td>IMC</td>
<td>International Medical Corps</td>
</tr>
<tr>
<td>IYCF-E</td>
<td>Infant and young child feeding in emergencies</td>
</tr>
<tr>
<td>KAP</td>
<td>Knowledge attitudes and practices</td>
</tr>
<tr>
<td>LoU</td>
<td>Letter of understanding</td>
</tr>
<tr>
<td>M&E</td>
<td>Monitoring and evaluation</td>
</tr>
<tr>
<td>MEL</td>
<td>Monitoring, evaluation and learning</td>
</tr>
<tr>
<td>NCC</td>
<td>Nutrition cluster coordinator</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organisation</td>
</tr>
<tr>
<td>NiE</td>
<td>Nutrition in emergencies</td>
</tr>
<tr>
<td>OCHA</td>
<td>Office for the Coordination of Humanitarian Affairs</td>
</tr>
<tr>
<td>OFDA</td>
<td>Office of United States Foreign Disaster Assistance</td>
</tr>
<tr>
<td>OTP</td>
<td>Outpatient therapeutic feeding programme</td>
</tr>
<tr>
<td>PCA</td>
<td>Programme cooperation agreement</td>
</tr>
<tr>
<td>RRT</td>
<td>Rapid Response Team</td>
</tr>
<tr>
<td>SBC</td>
<td>Social behaviour change</td>
</tr>
<tr>
<td>SMART</td>
<td>Standardised Monitoring and Assessment of Relief and Transitions</td>
</tr>
<tr>
<td>TAB</td>
<td>Technical Advisory Body</td>
</tr>
<tr>
<td>Tech RRT</td>
<td>Technical Rapid Response Team</td>
</tr>
<tr>
<td>ToR</td>
<td>Terms of reference</td>
</tr>
<tr>
<td>UNHCR</td>
<td>United Nations High Commissioner for Refugees</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children's Fund</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
</tbody>
</table>
Executive Summary
This report presents the introduction, methodology, findings, conclusions and recommendations from the external evaluation of the Technical Rapid Response Team (“Tech RRT”). The evaluation was intended to identify accomplishments, evaluate performance and identify constraints in implementation and attainment of the projects specific objective: improve overall emergency nutrition response.

The goal of the Tech RRT is to improve the overall availability of capacitated emergency nutrition specialists in the humanitarian technical response, in terms of deployment and non-deployment support. The Tech RRT advisors deploy to provide technical surge capacity to humanitarian responders to respond quickly and effectively to humanitarian emergencies.

From January 2016 to December 2017, the Tech RRT responded to 13 different emergencies with 31 deployments and provided remote non-deployment support on at least 20 occasions. This support has been across the 4 thematic areas of infant and young child feeding in emergencies (IYCF-E), community based management of acute malnutrition (CMAM), assessments and social behaviour change (SBC).

The evaluation looks at the period when the Tech RRT first deployed to the end of the South Sudan field trip (January 2016- 10th March 2018). The evaluation was largely based on qualitative data collected during interviews with global and country level stakeholders, and a review of project documentation. Both global and country level informants were sampled purposively. Yemen, Nigeria, Syria/Turkey and South Sudan were selected as priority contexts for interview and document review. This was due to both the availability of informants and the need to focus the evaluation. A field visit to South Sudan during the evaluation allowed for better access to interviewees, observation of two advisor deployments and analysis of how the deployments have led to an improved response.

The evaluation findings will be used to inform the Tech RRT work plan up to March 2019 and the future of specialised technical support provision during nutrition emergencies. Intended evaluation users include consortium partner staff, Global Nutrition Cluster Coordination Team (GNC-CT), UNICEF Nutrition in Emergencies programme staff, Office of United States Foreign Disaster Assistance (OFDA) staff and the Tech RRT team.

The following 28 findings were made:

General
1. The Tech RRT has provided highly qualified technical expertise in a rapid and efficient manner to clearly identified gaps in capacity.

2. The Tech RRT is well placed to enable cross-fertilization of learning from one context to another and the use of cutting edge best practice in emergency settings.
3. The relative detachment from the complexities of emergencies that the Tech RRT advisor enjoys, whether supporting remotely or in person, allows for focused and efficient support to be provided.

4. Given the multiple stakeholders involved and the need to demonstrate effectiveness, fastidious monitoring of time spent and outputs, as well as comprehensive documentation of learning are critical.

5. Non-deployment time has not been clearly optimised and more rigorous systems are required to more effectively use and demonstrate the added value.

Relevance/appropriateness

6. Overall interviews and document analysis indicate that the deployments were largely regarded as relevant and appropriate to the needs of nutrition emergencies.

7. CMAM and IYCF-E were regarded as appropriate to the technical needs of nutrition emergencies. However the assessment function is seen as too focused on SMART surveys and should respond to different assessment needs. SBC has been the least demanded function, due to a lack of awareness of its use in emergency settings.

8. Deployments rarely met the target of deploying within 72 hours due to factors external to the Tech RRT.

9. The type of support provided was relevant to the needs identified in each context, but not always deemed an appropriate role for the Tech RRT.

10. It is felt by informants that the Tech RRT’s role is to improve quality and scale of interventions with more “hands-on” support, rather than establishing the policy environment for interventions to operate.

11. The Tech RRT has largely been effective in making sure that the support provided does not duplicate with other mechanisms and UNICEF technical support.

12. There is a common understanding that the Tech RRT should be filling a gap in technical knowledge rather than a gap in personnel, however there is a grey area in between, and there are some examples of appropriate support where technical expertise does exist.

13. The Tech RRT provides high quality support through highly qualified advisors able to draw on experience in multiple contexts.

14. In all deployments analysed, Tech RRT advisors have successfully provided support to the collective.

15. Deployment durations were often over the target of “approximately 6 weeks”. The Tech RRT was found to be at times flexible in increasing this duration but also that the limitation
sometimes reduced the ability of deployments to optimise support. The limitation is seen as a valuable metric to ensure the use of the Tech RRT is well known (and not requested as a gap filling resource).

16. With some exceptions, non-deployment has generally been poorly structured and monitored, and the efficiency and usefulness for building technical capacity has been varied.

17. There is little appetite amongst informants for expanding into additional sectors however strong support for nutrition sensitive programming, intersectoral work and nutrition response preparedness.

18. The Tech RRT is not well placed to do research itself but could take advantage of its unique position by identifying opportunities for new research, documenting learning and operationalizing new evidence-based approaches.

19. In general, informants felt that the Tech RRT was moderately well known globally.

20. Although the Tech RRT lacks a formalized communications plan, important efforts have been made to generate demand for the service.

Effectiveness

21. Deployments were largely effective in meeting the needs of the country programme as defined in the assignment ToR.

22. The monitoring and evaluation plan is effective in measuring the success of the project at the output level, but has no means to measure success at outcome or impact level.

23. The Tech RRT was found to coordinate very well at country level, and largely well at global level.

Efficiency

24. The Tech RRT consortium has functioned well with efficient governance systems and strong relationships between consortium members.

25. Standby Partnership Agreements between UNICEF and partner agencies have facilitated smooth deployments, but alternative arrangements (e.g. using the LoU) have been problematic.

26. On the whole, the deployment mechanism works well in enabling rapid deployments following requests, whilst ensuring appropriate engagement (at field level) and coordination (at global level).

27. Informants generally believed that there is a strong role for the Tech RRT under the organization and guidance of the NiE TAB. There is both an appetite for a common approach and also a desire to hold on to the successes of the Tech RRT.
Sustainability

28. Without on-going core funding, a cost recovery model seems to be the only available option for sustaining the Tech RRT in the long term. Despite some concerns, recent examples show that requiring a financial contribution from actors at field level is viable.

27 recommendations were made under the categories of type of support, deployment process, non-deployment work, the development of the Tech RRT and coordination, communications, monitoring, evaluation and learning, and finally, programme management and sustainability.
1. Introduction

This report presents the introduction, methodology, findings, conclusions and recommendations from the external evaluation of the Technical Rapid Response Team (“Tech RRT”). The evaluation was intended to identify accomplishments, evaluate performance and identify constraints in implementation and attainment of the projects specific objective: improve overall emergency nutrition response. The evaluation findings will be used to inform the Tech RRT work plan up to March 2019 (the end of the current funding) and the future of specialised technical support during nutrition emergencies. Intended evaluation users include consortium partner staff, Global Nutrition Cluster Coordination Team (GNC-CT), UNICEF Nutrition in Emergencies programme staff, Office of United States Foreign Disaster Assistance (OFDA) staff and the Tech RRT team.

An internal evaluation was conducted in August 2016. This covered the first year of the project (August 2015-July 2016) and examined the Tech RRT’s relevance, effectiveness, efficiency and sustainability. The evaluation covered 11 deployments as well as non-deployment activities.

1.1. Objectives

As detailed in the Terms of Reference (ToR) this external evaluation is being conducted to identify:
- Accomplishments
- Performance (internal and external)
- Constraints in implementation of the program and in attainment of the project’s specific objective: to improve overall emergency nutrition response.

1.2. Background

The Global Nutrition Cluster (GNC) was established in 2006 as part of the Humanitarian Reform process, with its current aim “to support effective and predictable delivery of nutrition specific and nutrition sensitive interventions for those affected by humanitarian crises” through a “multi-stakeholder, multi-pronged and multi-sectoral approach”. The GNC collective is responsible for improving “the nutritional status of crisis affected populations by enabling coordination mechanisms to achieve timely, quality, and appropriate nutrition response.” Therefore the GNC supports national nutrition coordination teams’ mechanisms to achieve these goals in the most appropriate way.

This approach was developed on the assumption that collectively partners would have the required technical capacity to deliver effective and high quality interventions, and if not technical support for the collective response would be available from UNICEF. However the response to Typhoon Haiyan in the Philippines in 2013 and the response to South Sudan conflict in 2013/2014 demonstrated that the emergency nutrition sector lacked the technical capacity available for rapid deployment when emergency needs arise. There were also gaps in the ability of the nutrition sector to provide reliable and rapid needs assessment information, and insufficient capacity to ensure high quality and harmonised technical support in both treatment and prevention of acute malnutrition.

1 Global Nutrition Cluster Strategy 2017-2020
2 ibid
3 Lessons Learned in Philippines Nutrition Cluster, GNC and Philippines Cluster 11 September 2014
In 2015, an evaluation of the Support Provided by the GNC to National Coordination Platforms was conducted. This assessed the general support provided but specifically looking at the support provided by the Rapid Response Team (RRT). The RRT provides rapid emergency support to both set up cluster platforms and to existing platforms in terms of cluster coordination and information management. The focus of the RRT is to provide support to the collective response by coordination of technical nutrition in emergencies interventions. However their role is not to implement technical interventions nor to provide support, such as trainings, directly to implementing partners. The evaluation recommended that the GNC, and partners, should explore ways in which national clusters could have better access to such technical support. Ultimately it was decided that dedicated resources in the following four technical areas were required; community based management of acute malnutrition (CMAM), infant and young child feeding in emergencies (IYCF-E), assessments and social-behaviour change (SBC).

After discussions amongst the GNC partners, the most viable option, that also attracted donor support, was for a consortium of NGOs to develop a project that would ensure the rapid provision of technical support during emergencies. The GNC partners International Medical Corps, Save the Children and Action Against Hunger developed the Tech RRT programme in collaboration with OFDA. Three separate rounds of funding have been awarded by OFDA/USAID starting 24th August 2015 and finishing 31st March 2018. A further round of funding up to 31st March 2019 was confirmed in March 2018 (during the evaluation).

1.3. The Technical Rapid Response Team
The Tech RRT is modeled on the RRT mechanism, in that cluster partners host advisors that are centrally coordinated (by IMC (consortium lead) for Tech RRT and by GNC-CT for RRT). The goal of the Tech RRT is to improve the overall availability of capacitated emergency nutrition specialists in the humanitarian technical response, in terms of deployment and non-deployment support. Like the RRT, the Tech RRT advisors deploy to provide technical surge capacity to humanitarian responders to respond quickly and effectively to large-scale sudden onset (Level 3) and other humanitarian emergencies (Level 2, protracted emergencies and slow onset emergencies). When not deployed advisors work on supporting emergencies remotely and activities designed to build global capacity to respond better to nutrition emergencies.

Since its conception, the Tech RRT has provided support specializing in community-based management of acute malnutrition (CMAM), infant and young child feeding in emergencies (IYCF-E), social behaviour change (SBC) and assessments. The type of support provided during deployments has included; capacity assessments, capacity building, development of training plans, monitoring, supportive supervision, technical advice on corrective action, strategic advice, actor mapping, assessment design, development of assessment tools, implementation of assessments, establishing working groups, guideline review and development, and development of training tools. An example from a Nigeria deployment is shown in Box 1.
Box 1 Deployment Example

Inpatient Treatment support in Borno and Yobo States, Nigeria

Duration: 5 weeks, June-July 2017.

Tasks included:
- Capacity building assessment
- Development of capacity building plan
- Training in inpatient treatment
- Coaching toolkit development
- Development of scale up plan
- Strengthened referral system guidelines

The Tech RRT is available to provide remote support for specific emergency responses and support in the development of global capacity to respond to emergencies. This has included pre and post deployment support, producing learning products, webinars, review of guidelines, training, remote assessment support, literature reviews to support research and authorship of articles on the Tech RRT (see Box 2 for some examples and Annex 1 for a non-exhaustive list.)

Box 2 Examples of non-deployment work done by Tech RRT Advisors

- Supported the revision of SPHERE standards handbook
- Review and provide inputs to the recommendations for IYCF-E rapid response kits
- Developing guidance on common methods, approach and tools for knowledge, attitudes and practices (KAP) surveys base on evidence and lessons learnt from the field
- Post deployment webinars for Nigeria, Iraq and Somalia
- Support to revision of the CMAM Toolkit

Initially support (deployment and non-deployment) was only provided for cluster/sector coordination platforms and had to support the collective response. However since September 2017 this has now been extended so that support can be provided to individual, or groups, of specific partners (be it national or international NGOs or government). It was decided that this would equally work towards improvement in quality and scale of response but in a more practical manner.
Advisors employed directly by the Tech RRT have provided most of the support. Since the beginning of the project these have ranged between 3-5 individuals each with specialties in 1 or 2 of the 4 thematic areas. A total of 9 advisors (5 passed and 4 current) have been employed since the beginning of the Tech RRT. On 6 occasions (19% of deployments) the Tech RRT have not been available and advisors from the Save the Children Humanitarian Support Team or other consortium partner staff have been utilized.

Like the RRT, Tech RRT advisors are limited for deployment for 50% of the time with the remaining 50% dedicated to leave and non-deployment work (see above)\(^4\).

The Tech RRT aims to deploy an advisor within 72 hours of the request, pending visa application, and deploy support for up to 8 weeks. The project aims to respond to 100% of requests within this time. Prior to deployment terms of reference (ToR) are developed by the in-country team and reviewed by the Tech RRT Deployment Steering Committee (see below) and the advisor.

Tech RRT advisors are deployed to country programmes and tend to be either hosted by UNICEF under the Standby Partnership Agreement with the Advisor’s contracting consortium partner or directly by a consortium NGO. In fewer cases another NGO (e.g. Concern) has hosted the advisor. In all cases, regardless of hosting agency, the advisor has worked on behalf of the cluster for the collective response. However recent changes allow for the Tech RRT to support individual agency responses.

The advisor is responsible for ensuring a comprehensive handover of activities to the cluster, UNICEF or partner NGOs. This includes developing an appropriate continuation plan, with necessary resources and allocation of responsibilities. Following the deployment an end of mission report is developed by the advisor and reviewed by the host agency and Tech RRT Programme Manager. This report documents the deployment process, changes to the ToR, achievements of the objectives outlined in the ToR, factors that facilitated the deployment, challenges and recommendations. The in-country supervisor and the advisor also complete a performance evaluation. This is an opportunity for the supervisor to provide feedback on the performance of the advisor and some insight into the likely impact and sustainability of the deployment. Finally, following the deployment, a user satisfaction survey is sent to all partners who worked with the advisor to solicit broader views on the deployment and on the advisor’s performance\(^5\).

1.4. Management of the Technical Rapid Response Team

The Tech RRT has a Programme Manager and a Deputy Programme Manager charged with managing deployment requests, coordinating between GNC, OFDA, UNICEF and consortium partners, and developing tools and systems to ensure the smooth running of the system. A Steering Committee containing members from each of the consortium partners and the Programme Manager meet once a month. The Steering Committee makes both strategic and operational decisions but funding,

\(^4\) Prior to September 2016 Non-deployment time was evenly dedicated to Tech RRT work (25%) and work for their host NGO (25%).

\(^5\) The user satisfaction survey was introduced in 2017 but in practice it has only been sent out once in June 2017 to 60 users from 10 deployments with a 57% response rate.
human resources and the strategic direction of the Tech RRT are some of the key concerns. Finally, there is a deployment steering committee (DSC) including GNC-Coordination Team (GNC-CT) and UNICEF representation, as well as the Steering Committee members. This committee decides whether the requests meet the criteria for deployment. The criteria for deployment (adapted from the GNC RRT mechanism) are as follows:

1) Level 2/Level 3 categorization where cluster or sector coordination mechanisms are in place or a threat or forecast of a Level 2/Level 3 emergency
2) Humanitarian crisis, including rapid-onset emergency such as natural disaster or slow-onset emergency as defined by OCHA, such as drought, political/economic crisis and global challenges (climate change, etc.).
3) Countries with limited technical capacity in nutrition in emergencies.
4) Does not duplicate other support on the ground or planned.

Each deployment must also be approved by OFDA, unless the deployment is not funded by the OFDA grant (such as those that are in response to a refugee situation). Requests for remote support are dealt with on a more ad-hoc basis and tend to be accepted by the Programme Manager, in discussion with the relevant consortium partner, depending on the availability of the advisors.

As consortium lead International Medical Corps is responsible for the overall programme management and disbursement of funds to the two other partners (Action Against Hunger and Save the Children). Each partner NGO also hosts at least one Tech RRT Advisor. Although the advisors are line managed by their relevant NGO, the Programme Manager has oversight over their work plans, and coordinates their deployments. This is a similar model employed by the Coverage Monitoring Network (with Action Against Hunger as the lead) and the Rapid Response Team (with GNC-CT as lead).

1.5. Overview of deployments
From January 2016 to December 2017, the Tech RRT responded to 13 different emergencies with 31 deployments (see Annex 2 for a full list) and provided remote non-deployment support on at least 20 occasions. 4 emergencies (Yemen, Syria, South Sudan and Nigeria) have received support on 4 different, Iraq and Ethiopia on 3 occasions, Mozambique and Bangladesh on 2 occasions and Somalia, Serbia/Greece (European refugee crisis), Niger, Haiti and East Africa on 1 occasion (see Figure 1).

6 Existing or planned technological capacity is determined by what members of the DSC have been able to ascertain from their contacts in-country. It is subjective evaluation based on the information they are able to obtain.

7 There is no centralized method of recording non-deployment work this is an approximation. See section 3.1.3 for more details.

8 Support was provided in Somalia, South Sudan and Kenya in response to the El Nino crisis.

9 Deployments to Bangladesh and Serbia/Greece were not funded by OFDA.
These 31 deployments have been across the 4 thematic areas with IYCF-E being the most frequent (15 deployments) followed by CMAM (7 deployments, assessments (5 deployments) and SBC (4 deployments). A total of 10 deployment requests, across the 4 thematic areas, were rejected (see Figure 2). This was because they were not appropriate for the Tech RRT (e.g. not a humanitarian context), the Tech RRT was unable to find the right profile or there were other priorities at the time (see Annex 3 for further details).

1.6. Development of technical support at global level
Over the past few years UNICEF has lead the development of the Nutrition in Emergencies Technical Advisory Body (TAB). When functional, this body will have three different components for providing technical support in: 1. Implementing existing guidelines (both remote and on the ground technical advice, and coordination of global capacity), 2. The development of interim guidance (consensus driven guidance) and 3. The increase in quantity and quality of staff and institutions (specialized technical support through in-country deployments and capacity strengthening). Each component will be led by UNICEF and an, as yet unidentified, NGO co-lead. It is anticipated that the TAB will become
operational in 2018. At the time of writing UNICEF have secured seed funding to begin operation, however it remains unclear how it will be governed on a strategic level and how each component will operate on a day-to-day basis. Until March 2019 the Tech RRT will continue to operate (given it has funding from OFDA), however it is yet to be determined how it will connect with the TAB. This evaluation will therefore serve to inform not only the shape of the Tech RRT in the coming year but also what role the Tech RRT will have when the TAB is fully functional, and how the Tech RRT will complement the TAB.
2. Methodology

2.1. Evaluation Scope

The evaluation looks at the period when the Tech RRT first deployed January 2016 to the end of the South Sudan field trip (January 2016- 10th March 2018). See Annex 4 for the evaluation work plan. The evaluation looks at both the deployment and the non-deployment support provided by the Tech RRT. The evaluation focused on the functioning of the Tech RRT but did not analyze the specific technical approaches of each deployment.

2.2. Evaluation approach

The evaluation was largely based on qualitative data collected during interviews with global and country level stakeholders (see Annex 5) and a review of project documentation (see Annex 6 for full list). Quantitative data from the User Satisfaction Survey was also included to support findings. This survey was sent out to 60 different individuals involved in the work with the advisor from 10 deployments and received a response rate of 57%. The survey covered questions on the deployment and the performance of the advisor.

The questions outlined in the evaluation terms of reference (see Annex 7) were developed and structured into an evaluation matrix that allowed for clear indicators, questioning and data collection strategies to be highlighted (See Annex 8). Two interview guides (one for global level informants and one for country level informants) were developed to provide data for each indicator. As interviews were conducted, over Skype and in person, responses to specific questions were inserted into an Excel based data collection matrix. Once data collection was complete, filters and search functions in Excel were used to search for findings and categorizing by constituent group, to enable triangulation and analysis.

The evaluation was conducted by an independent consultant employed by International Medical Corps and declares no conflict of interest. The evaluation was conducted in a participatory manner, working in close collaboration with the Programme Manager throughout the evaluation and engaging evaluation users at various stages of the evaluation (ToR development, Inception Report review, interview and draft report review).

The evaluation findings are organised in terms of relevance/appropriateness, effectiveness, efficiency and sustainability. Each section is divided into sub-sections. Generally, sub-sections begin with the headline finding (in bold), followed by descriptive details about what happened according to the informants or the evaluator’s research. This is then followed by a presentation of views from the informants and the evaluator’s interpretation of the situation. Headline findings are then presented again in the Main Findings section. A set of 29 recommendations is then presented in the final section.

For example, the section on Other Sectors (3.1.4) is not an evaluation of what has happened but rather a solicitation of informant views on the future of the Tech RRT and then an analysis from the evaluator.
Preliminary recommendations were developed based on the main findings, and first shared with the Programme Manager. A further round of feedback on the recommendations, alongside feedback on the report as a whole, was collected from the Steering Committee, UNICEF staff, OFDA staff and the GNC-CT.

2.3. Sampling
Both global and country level informants were sampled purposively. All 4 current advisors were interviewed, as well as some former advisors (3 out of 5), all members of the Steering Committee, Save the Children HST advisors, UNICEF nutrition section in the programmes division, nutrition in emergencies staff, OFDA personnel and the GNC-CT. Country level personnel such as Nutrition Cluster Coordinators and NGO personnel that have requested and worked with advisors were also interviewed. Some individuals that were well informed but who do not necessarily have interest in the Tech RRT were also identified for interview. A total of 41 interviews were conducted in person and over Skype. All key stakeholders were interviewed with the exception of the Deputy Programme Manager who was absent during the evaluation.

Yemen, Nigeria, Syria/Turkey and South Sudan were selected as priority contexts for interview and document review. This was due to both the availability of informants and the need to focus the evaluation. These four contexts were chosen because they emerged during the interviews more than others, indicating a richer and more informative experience. Furthermore, they provide a balanced in terms of stronger as well as less successful deployments, deployments by Tech RRT and HST advisors, protracted and more rapid onset emergencies, and Middle East and Africa responses. A total of 14 deployments (45% of all 31 made in 2016-2017) were made to these 4 contexts.

A field visit to South Sudan was also conducted during the evaluation. The field trip allowed for better access to interviewees, observation of two advisor deployments and analysis of how the deployments have led to an improved response. During the field trip, the evaluator was able to interview Nutrition Cluster partners who have received support and partners who had not directly received support, as well as observe support provided by two advisors. First, a CMAM deployment providing monitoring and coaching support to the nutrition cluster and second, an IYCF-E deployment providing follow up support to the development of IYCF guidelines, training tools and roll out of trainings. This field trip allowed for real-time analysis of two specific deployments, and a more in depth understanding of how Tech RRT advisors are able to influence responses.

2.4. Limitations
There has been limited quantitative or qualitative data collected over the course of the Tech RRT. Quantitative data has been limited to four key performance indicators and relate only to outputs and coverage of deployments. There has been no data collected on the impact or outcome level and therefore making empirical analysis against some evaluation questions challenging. In these cases, findings have been drawn from the perceptions of informants combined with qualitative data from documentation. Qualitative data on deployments is limited to the end of mission reports and performance evaluations. A sample of 14 (of 31) was selected to support analysis on deployments (as explained above).
Country level informant interviews and document review focused on 14 out of 31 deployments to Nigeria, Yemen, South Sudan and Syria/Turkey11. It is possible that the focus on these deployments biased the analysis, however the fact that most interviews and a great deal of the document review were applicable to the performance of the Tech RRT as a whole, it is likely to have been limited.

It is possible that data collected during the South Sudan field visit had greater influence on the analysis than data collected on other contexts. Given the broad range of support provided in South Sudan it gives a representative example of Tech RRT support, and the ability to see Tech RRT support “in action” allowed for great detail on the Tech RRT to be added to the evaluation than would have without such a visit.

\section*{2.5. Evaluation Questions}

The evaluation questions detailed in the ToR were extensive and ambitious for the given time frame. During the inception period the evaluator reviewed documentation and discussed the main objectives of the evaluation with the Programme Manager and the Steering Committee. Based on this review and discussions the evaluator was able to identify 4 priority areas: reach and effectiveness of project, connectedness of deployments (is work done during deployments followed up), efficiency of mechanism and financial sustainability. 13 of the 31 evaluation questions that fall within these priority areas have been identified as priority questions based on their significance and evaluability. The evaluation has therefore ensured at least these 13 have a rich and robust evidence base, and the other questions are addressed with as much depth as possible.

1. How useful (relevant/timely) were the deployments to the nutrition community where support was provided?
2. How relevant and useful is the work performed during non-deployment time to collective global and country level nutrition actors?
3. Are non-deployment work plans relevant? Are the outputs of that work relevant and useful?
4. How effective was each component of the project (deployment and non-deployment time) in reaching their objectives?
5. How well known is the Tech RRT?
6. Was the monitoring and evaluation plan effective in gathering information to measure the success of the project?
7. Was the Tech RRT effective in coordinating with relevant partners/bodies?
8. To what extent does this operational model facilitate rapid deployments?
9. To what extent was the Tech RRT mechanism efficient in deploying advisors?
10. What real difference has the project made on humanitarian response broadly (either globally or at a country level)?
11. What are the most appropriate ways to sustain the Tech RRT?
12. Could a cost recovery model be an appropriate option for the Tech RRT? What would be the advantages and drawbacks of such a model?
13. What are funding mechanisms/sources that could be viable to finance the Tech RRT?

11 with the exception of one informant from Ethiopia
3. Findings

3.1. Relevance/appropriateness

- How useful (relevant/timely) were the deployments to the nutrition community where support was provided?
- How relevant and useful is the work performed during non-deployment time to collective global and country level nutrition actors?
- Would it be feasible and appropriate to integrate a research component within the scope of the Tech RRT?
- Are non-deployment time work plans relevant? Are the outputs of that work relevant and useful?
- How well known is the Tech RRT?

Relevance and appropriateness has been evaluated in terms of thematic areas (CMAM, IYCF-E, assessment and SBC), deployment work (including timeliness, type of support, target of support and duration of deployment) and non-deployment work. A discussion related to whether the Tech RRT should expand into other sectors (including research) is also included. Finally, an assessment of the level of awareness of the Tech RRT amongst nutrition actors, at both global and country levels, is also made.

Overall interviews and document analysis indicate that the deployments were largely regarded as relevant and appropriate to the needs of nutrition emergencies. The continued demand for advisors indicates that the Tech RRT provides an important and needed service. Furthermore, results from the user satisfaction survey showed respondents regarded the deployments to be very relevant (71.88%) and timely (84.38%).

3.1.1. Thematic area

CMAM and IYCF-E were regarded as appropriate to the technical needs of nutrition emergencies. However the assessment function is seen as too focused on SMART surveys and should respond to different assessment needs. SBC has been the least demanded function, due to a lack of awareness of its use in emergency settings.

Generally speaking, CMAM capacity at field level is relatively mature, and therefore requests for support were either to scale interventions (e.g. in Nigeria) or to improve the quality of existing interventions (e.g. in South Sudan and Yemen). Country level IYCF-E systems however were less developed and support varied from developing strategies and conducting trainings, to establishing technical working groups and developing national training strategies. Informants did not doubt the need for support in either area, but recognized the different type of support required.

The assessment function is regarded as a critical component enabling the Tech RRT to support country programmes in collecting better quality context information to inform programming. The country programmes where the assessment advisor was deployed often had some assessment structures (e.g. nutrition information working groups) and capacity in place. The advisor was able to provide support to improve the capacity to produce good quality assessment information, including
the development of assessment guidelines (Yemen), support surveys in a timely fashion (South Sudan) and train survey managers (all assessment deployments).

There is a widely held opinion amongst informants that the assessment function has been too focused on providing SMART support. This is likely due to a lack of demand for other assessment requirements but also a lack of promotion that the assessment function is able to provide support beyond SMART surveys. Despite the lack of demand, there is a known need for other assessment support such as bottleneck and barrier analysis, KAP surveys, coverage surveys and IYCF-E assessments. Furthermore, some informants felt that the assessment role should be able to provide support in developing nutrition surveillance systems, including monitoring and evaluation, and ensuring linkages with national health system monitoring (e.g. DHIS2)12. This may require more long-term involvement and would require appropriate linkages with the information management function of the country nutrition cluster and health system where appropriate. Given that it has been agreed for the SMART Project (lead by Action Against Hunger Canada) to manage most requests for SMART technical support in the future, it is critical that the Tech RRT re-focus the assessment function towards a broader assessment portfolio.

There is a perception amongst informants that the SBC function has been less successful than the others due to two factors. First, a lack of awareness at field level on the need for and application of SBC (demand), and second, difficulty in finding, and securing, appropriate SBC personnel (supply). SBC is a relatively new field for emergencies, and field programmes do not have the capacity in place to systematically implement and monitor behaviour change within CMAM and IYCF-E activities, and therefore may require more extensive support than simply a short deployment. That said, SBC presents a great opportunity for the nutrition sector to promote and capitalise on cross-sector programming, given SBC is applicable to behaviors outside of nutrition, such as in WaSH and health.

Whilst the Tech RRT should continue to identify SBC profiles, investments could be made in existing advisors to build the required skill set. For example working with the CMAM Advisor to develop skills to enable integration of behaviour change work in CMAM programme support. Given that SBC in emergencies is a relatively new field, extra efforts should be made to document what works and identify areas for more rigorous research.

3.1.2. Deployment work

Timeliness

Deployments rarely met the target of deploying within 72 hours due to factors external to the Tech RRT.

Timeliness was evaluated in terms of the speed at which advisors were able to be on the ground after having been requested. The Tech RRT aims to deploy advisors within 72 hours of the request.

12 Demographic Health Surveys (DHS) and Multi Indicator Cluster Surveys (MICS) are normally government led, supported by partners and involve planning over a long period therefore not appropriate for the Tech RRT, however they could support ensuring appropriate linkages between emergency response information and national level health information.
being lodged. Despite the Tech RRT mechanism being very responsive, none of the 14 deployments were able to provide evidence they reached the 72-hour target\(^\text{13}\). Reasons for the delays included finalization of the ToRs taking time at field level, visa processes, misinterpreting requests for more information from OFDA as ‘approval pending’, waiting for in-county approval, advisor illness and worsening security situation.

Long durations required to develop the ToR was the predominant cause for deployment delay. Given the Tech RRT and nutrition cluster coordinator (or requesting agency) aim to ensure ToRs meet the needs in country and are developed in a participatory manner, ToR development is perhaps inevitably going to take longer than 72 hours (3 days), but need not take weeks. In some cases, despite the efforts of the Programme Manager to support ToR development and speed up the process, country teams took a long time to agree on a final ToR and were sometimes unresponsive to communication. As soon as the Programme Manager is aware of a deployment an advisor is usually identified. The delays in ToR development therefore have had an important impact on the Tech RRT as delays have a knock-on effect on other deployments as well as the advisor’s personal lives.

It is evident that the 72-hour limit can also create unnecessary and damaging stress without tangible gains. And rather than being a drawback, advisors expressed how thorough pre-departure preparation has paved the way for a more successful deployment because actors have been better prepared and the advisor has gained a better understanding of situation before arrival (e.g. Nigeria IYCF).

Measures taken by the Tech RRT such as the development of generic ToRs for each technical area are likely to have sped up the process, but it is clear additional procedures are needed. This could include more coercive measures such as imposing deadlines for ToR completion or adding the potential of losing the commitment of Tech RRT support. However the Tech RRT should first and foremost remain supportive and avoid putting unnecessary pressures on partners in emergency contexts. There is an important balance to strike in supporting emergency contexts however possible and ensuring delays are not detrimental to the Tech RRT or the ability to provide support to other emergency contexts. Development of a provisional ToR prior to deployment that is then detailed and finalized during the first day of the deployment should also be considered formerly (as has been done in a number of cases already).

The Tech RRT has largely responded to protracted crises where the benefits of the 72-hour target are unlikely to be realized. Therefore in such situations more flexibility in deployment speed would be appropriate. However, the Tech RRT should continue to develop systems to ensure they are able to respond to deployment requests should the Tech RRT be required to respond to rapid on-set emergencies, where the importance of rapid deployment are more likely to be realized.

\(^{13}\text{3 out of 14 end of mission reports did not detail the time from request to deployment and 11 took between 6 days and 7 months to deploy}\)
Type of support
The type of support provided was relevant to the needs identified in each context, but not always deemed an appropriate role for the Tech RRT.

The process for developing the terms of reference (ToR) ensured the activities were suited to the needs in each context. ToRs were always developed with the requesting partner (nutrition cluster coordinator or NGO) and in most cases cluster partners were at least consulted on the details. This was usually done in advance of the deployment. Advisors expressed that it was critical for ToRs to be developed in advance of arrival however finalization of the ToRs with cluster partners during the first days of the assignment were thought to further increase ownership.

Activities outlined in the ToR and then undertaken during the deployments covered:

1) Training and capacity building activities, such as capacity assessment, coaching and on-the-job training, development of training strategy and work plans, monitoring of training implementation and development of training/coaching toolkits;
2) Survey and monitoring work such as data analysis, development of indicators (for monitoring or surveys), development of assessment tools, survey protocol development and development of reporting mechanisms;
3) Other technical activities including; the development of joint statements, the establishment of technical working groups, the development of strategies and guidelines, the development of action plans for CMAM/IYCF roll out, activities related to integration with other sectors and the development of Breast Milk Substitute reporting mechanisms.

The proposal does not specify the type of technical support that the Tech RRT should provide, simply “dedicated technical support for the collective to support technical capacity and coordination.” This lack of a precise definition has led to divergent understandings over the type of technical support that the Tech RRT should be providing. There is a feeling among some informants (donor and consortium partners) that the Tech RRT should prioritize more direct support (such as on the job training) over more top-level support (such as strategy and guideline development). On the other hand, others believe that the Tech RRT should be able to respond to whatever technical gap exists.

It is felt by informants that the Tech RRT’s role is to improve quality and scale of interventions with more “hands-on” support, rather than establishing the policy environment for interventions to operate.

In emergency settings there is often a lack of available capacity to directly support field programmes to ensure high quality implementation. Therefore, there is a role for the Tech RRT to provide quality assurance support in terms of monitoring and coaching (for example). Second, given the independence of the Tech RRT, partners are likely to be more willing to expose weaknesses, without fear of repercussions such as losing funding, as might be the case if UNICEF, who are seen as a donor, were doing the quality assurance work. Both Nutrition Cluster Coordinators and cluster partners should be encouraged to engage the Tech RRT in activities that can improve the quality of programming in real time, such as the CMAM deployments to Ethiopia (2017), South Sudan (2018) and Nigeria inpatient care (2017) that provided on-the-job coaching to CMAM sites. One challenge
with such support is to ensure that this work does not only benefit the OTP sites (for example) that are visited, and findings are instead documented and shared with nutrition partners in the country, to allow them to benefit and develop corrective action in their own programmes.

Another challenge is being able to ensure the sustainability of a high quality response following a Tech RRT deployment. The Tech RRT is able to provide short-term support but are not available, nor appropriate, to provide on-going support that is often required. As technical lead for nutrition, UNICEF is best placed to ensure this continuity between surge technical support (provided by Tech RRT for example) and on-going technical support to governments.

Given UNICEF’s mandate to build the capacity of governments to respond to nutritional needs, and their long term engagement with governments, even in most emergency settings, they tend to have the resources, experience and positioning to develop appropriate nutrition policies and provide on-going technical support. However if the appropriate policy architecture is not in place, then the Tech RRT may be in a position to develop a workable policy to harmonize and guide implementation in a timely manner, without taking over UNICEF’s role. As one informant explained: “For example, the role of Tech RRT is not to develop a MAM treatment protocol but to advise on temporary criteria for starting treatment of MAM using an expanded admission criteria-using RUTF, and supporting partners to implement that, whilst UNICEF in parallel are supporting the government to develop a more comprehensive and long term strategy.” Critical to this approach would be the ability of the Tech RRT and UNICEF to work together to ensure a smooth transition and continuity in the provision of technical support and linking to longer-term technical development.

The Tech RRT has largely been effective in making sure that the support provided does not duplicate with other mechanisms and UNICEF technical support. This has been facilitated by inclusion of UNICEF on the Deployment Steering Committee who is able to inform the decision knowing what support will be available to the particular context. Only in one example was this known to be unsuccessful. In Nigeria in 2016 the IYCF- Advisor was deployed at the same time as a UNICEF Nutrition Specialist with the same ToR. This was not only poor coordination, but also a missed opportunity for the Tech RRT and UNICEF technical function to dovetail their support, with IYCF-E Advisor providing the immediate necessities to improve the IYCF-E response and the Nutrition Specialist building on those gains.

There is a common understanding that the Tech RRT should be filling a gap in technical knowledge rather than a gap in personnel, however there is a grey area in between, and there are some examples of appropriate support where technical expertise does exist. The South Sudan IYCF-E deployments in November 2017 and February 2018 provide a good example where the technical expertise in IYCF-E exists in country, but the resources to carry the development of a strategy, design of tools, elaboration of a training plan and monitoring of implementation, did not. Without the Tech RRT support IYCF-E would not have got off the ground in the timely and effective way that it has in South Sudan. And also the CMAM deployment in Nigeria in 2016, where there was a clear need for an injection of support to roll out CMAM, but a lack of resource at country level to do this, and without the Tech RRT support it is unlikely to have been done in a timely manner. Whereas the Tech RRT should be protected as a technical support function, and not abused to simply fill a gap in resources, requests have been, and should continue to be, evaluated on a case-
by-case basis. If this means that additional technical support is needed to fulfill a role that would otherwise be neglected, then this would be a valuable deployment in improving the quality of the response.

The Tech RRT provides high quality support through highly qualified advisors able to draw on experience in multiple contexts. The Tech RRT has been highly appreciated by users of the service due to the expansive experience and high quality of the Tech RRT advisors. This emerged as an added value in requesting support from the Tech RRT over other support (such as independent consultants). Furthermore, the fact that the advisor has the support of their host NGO and the Tech RRT Programme Manager was also found to be an added advantage to using the Tech RRT.

Target of support

In all deployments analysed, Tech RRT advisors have successfully provided support to the collective. There were concerns among some informants that historical attachments of advisors to particular NGOs or UNICEF, or the fact that advisors were hosted by NGOs, may create a perception (if not in reality) that the advisor is not working for the collective. However there was no evidence that this was actually the case and in fact advisors were largely seen as independent actors working on behalf of the nutrition cluster. This can be attributed to the conscientious efforts of advisors to clearly explain the role of the Tech RRT and ensure appropriate visibility (for example not wearing a UNICEF lanyard) when in country. Each deployment began with a briefing to the cluster and a clear explanation of their ToR and that although hosted and managed by a particular agency they are there to work for the collective and are accountable to the cluster.

There are concerns amongst some informants that the support provided by the Tech RRT has not been available, or has not trickled down, to smaller (both national and international) NGOs or local health authorities. Although smaller NGOs would have indirectly benefited through cluster engagement by the advisor, only a few smaller NGOs have received direct training or support from a Tech RRT advisor. The expansion of support to individual NGOs is therefore a welcome development.

Since September 2017 the Tech RRT has expanded its scope to support the activities of individual, or groups, of NGOs, directly and not necessarily the collective response. This is a positive development, as it tends to be smaller NGOs that lack technical expertise in nutrition, and not the larger NGOs with better access to technical support globally. For example, a health focused NGO in South Sudan was encouraged, and financed, to scale-up SAM treatment in 90 health centers, but had limited experience in CMAM. This would have been an ideal fit for Tech RRT support.

Furthermore, given the Nutrition in Emergencies (NiE) Technical Advisor Body (TAB), being spearheaded by UNICEF, is likely to provide technical support to the collective response through the nutrition cluster, the Tech RRT provides a strong added value in being able to support NGOs directly. It is unlikely that UNICEF, or the GNC, would be able to provide substantial direct programme
support to individual NGOs given their mandate to support the collective response and their limited capacity.14

The recent expansion to allow support to individual NGOs appears to still be unclear, or unknown, to many actors and the small number of requests from individual NGOs is likely to be indicative of this lack of awareness. The Tech RRT has begun several initiatives (including posting on relevant Emergency Nutrition Network fora, emailing clusters to share with partners and developing a decision tool to assist partners to work out what kind of support they may need) in order to reach out to international and national NGOs in countries with ongoing emergencies and facilitate demand.

In large and complex humanitarian emergencies there tends to be many different NGOs working in nutrition, both international and national. This will include the more established international NGOs (such as Action Against Hunger, Save the Children, IMC, World Vision) and those with less global leadership in nutrition (such as Medair, Samaritan’s Purse and CUAMM). National NGOs operating in nutrition either independently or in partnership with international NGOs may also have need for technical support. The World Food Programme (WFP) often partners with national NGOs and given their expansive operations globally would be able to identify partners with technical deficiencies. It is these national NGOs and international NGOs with less experience in nutrition that have the greater need for technical support and where the added value of Tech RRT support could be maximized15.

\textit{Duration of deployment}
Initially the project aimed to deploy for a maximum of 4 weeks. However it quickly became clear that given the demands from country programmes this was too restrictive. In practice the deployments became longer and officially they were increased to the more ambiguous “approximately 6 weeks” in subsequent proposal documents. Of the 31 deployments in 2016 and 2017 9 (29\%) were between 8-11 weeks (see Table 1), and 64\% 7 weeks or under.

<table>
<thead>
<tr>
<th>Number of weeks</th>
<th>Number of deployments (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5</td>
<td>11 (32%)</td>
</tr>
<tr>
<td>6-7</td>
<td>11 (32%)</td>
</tr>
<tr>
<td>8-11</td>
<td>9 (29%)</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
</tr>
</tbody>
</table>

14 It is understood that the cluster coordination teams provide technical support to cluster partners in terms of advice and Nutrition in Emergency trainings, however this typically does not extend to more substantial individual programme support, given the extensive workload of cluster coordination teams (typically a Cluster Coordinator and an Information Management Officer).

15 The country cluster coordinator should cover WFP partners when capacity assessments are conducted however this might not be done systematically and therefore such partners might be overlooked.
Deployment durations were often over the target of “approximately 6 weeks”. The Tech RRT was found to be at times flexible in increasing this duration but also that the limitation sometimes reduced the ability of deployments to optimize support. The limitation is seen as a valuable metric to ensure the use of the Tech RRT is well known (and not requested as a gap filling resource).

In some cases the Tech RRT has been flexible allowing for deployments to be extended when in country or longer deployments have been granted (for example for SMART survey support) from the outset. Longer deployments have been more readily granted if the need and the scale of the response was particularly large such as for the Bangladesh and Yemen IYCF-E deployments in 2017.

There is also a feeling (amongst advisors and field level informants) that the limitation in the deployment duration may have reduced the ability of the advisor to maximize the impact of their support. For example, there are concerns over whether capacity can be sufficiently built within a short deployment. This could be the case, particularly when a capacity building plan involves an extensive national to district level cascade. Such a cascade may take months and it would be inappropriate for the Tech RRT to be engaged throughout. However an appropriate follow up plan could ensure support is provided to in-country teams at critical moments during the cascade process. For example, an advisor may provide direct support to a national level training of trainers, but then remote support for the state level trainings, followed by a return visit to monitor the delivery of district level trainings and the integration of practices by the trainees.

Such a structure would mean optimizing deployment time, increasing engagement from in-country partners to lead the process, but still being available at critical moments to provide corrective action and ensure quality. This was almost the kind of arrangement that the IYCF-E deployments to South Sudan (2017 and 2018) took although the second deployment was added due to unexpected logistical challenges during the first deployment. The second deployment allowed for monitoring of the cascade training for IYCF-E, including talking to trained personnel and assessing to what extent they have been able to apply the training. For example, it was found that in some cases it was not the most appropriate person from organisations being trained (i.e. those able to influence and provide leadership on change of IYCF practice). This will have valuable input into the continuation of the cascade training across the country.

The annual planning of the advisors must also be considered alongside the individual needs of one response. An advisor is able to serve 4 countries with 6-week deployments however if the deployments are extended to 12 weeks (for example) then they can only serve 2 countries in a year. Therefore longer deployments will mean that an advisor is less available for other emergencies.

Deployment lengths and structures should be more flexible and adaptable to the specific needs and capacity on the ground, including maximizing the benefits of both remote and in-country support. For example, more support need not mean a much longer deployment. But could mean a 6 week deployment, followed by calls every 2 weeks for 2 months (to follow activities and provide support) and then a second (1-2 week) deployment 2 months later. This hypothetical example would allow for stronger support over a longer period but would not necessarily take the advisor away from supporting other contexts. Such arrangements would also be dependent upon the demand from
other emergencies and the availability of other advisors (or consultants/HST). In addition, team deployments may also be appropriate, where two advisors are working on the ground and/or remotely to work more efficiently. This of course would depend on the work at hand and other competing priorities for the Tech RRT.

3.1.3. Non-Deployment work

With some exceptions, non-deployment has generally been poorly structured and monitored, and the efficiency and usefulness for building technical capacity has been varied.

Tech RRT advisors are limited to 50% deployment time leaving a 50% for break and non-deployment work. This is agreed to be appropriate for the wellbeing of the advisors and to allow for additional non-deployment work to be carried out. In the 2015-2016 period the advisor non-deployment time varied between 28-64%, with an average of 46% (see Table 2).

<table>
<thead>
<tr>
<th>Advisor</th>
<th>Proportion of overall time spent not on deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>37%</td>
</tr>
<tr>
<td>3</td>
<td>44%</td>
</tr>
<tr>
<td>4</td>
<td>47%</td>
</tr>
<tr>
<td>5</td>
<td>51%</td>
</tr>
<tr>
<td>6</td>
<td>54%</td>
</tr>
<tr>
<td>7</td>
<td>64%</td>
</tr>
</tbody>
</table>

The project documents dedicate little explanation to how non-deployment time should be used, and no performance indicators related to the outputs of this work. Non-deployment work are focused on one of the following areas to improve nutrition responses:

- Building the capacity of consortium and other partners (e.g. Ministries of Health, government departments, in country UN agencies and local and international NGO staff) on the 4 thematic areas
- Providing remote follow up support (to deployments)
- Supporting global level initiatives (e.g. IYCF-E and Nutrition in WaSH related SBC)

In practice, the Tech RRT advisors have contributed to a wide range of initiatives including guideline development, capacity building (in person and via webinar), learning post deployment, self-development, pre/post deployment remote support to country programmes, developing Tech RRT systems, communications initiatives for the Tech RRT.

16 Each advisor had a different contract duration
The recording of non-deployment work has been comprehensive for some advisors but limited for others. This makes it difficult to know exactly how they have utilized this time. This lack of transparency has lead to a perception amongst stakeholders that the non-deployment component has not always been well used. This includes amongst the advisors who varied from being very satisfied with the non-deployment work and believing it was very useful, to being unsatisfied and doubtful of its utility.

Non-deployment work plans have been developed with some advisors, and monthly calls with the Tech RRT help to track progress. However, line manager (at host agency) supervision and oversight of non-deployment work varied amongst advisors, making demonstration of usefulness difficult to justify in some cases.

Non-deployment time is challenging since advisors need to be available for deployment at any given moment. This means only work that takes a matter of days or a couple of weeks, or work that can be put down when deployed, has been deemed suitable to take on. For example, longer-term tasks with fixed deadlines may not be appropriate for one advisor.

Non-deployment time has seemed to work well in contributing to global capacity when there have been large global initiatives to work on such as updating the SPHERE Handbook and CMAM Toolkit. Given the fast development of IYCF-E over the past 2 years, there has been lots of opportunity for the IYCF-E Advisor to develop relevant and interesting products. The post deployment webinars (conducted after deployments to Nigeria, Iraq and Somalia) were also well regarded, allowing for immediate sharing of learning across contexts.

Pre/post deployment support has been valuable during the Tech RRT. Often, tasks do not require presence in country, and in fact this could be a benefit, since the advisor is able to carry out tasks away from the stresses of an emergency.

Advisors should be available for three types of remote support: 1) global projects, 2) pre/post deployment support and 3) separate remote technical support. Non-deployment time should always be clearly defined, robustly managed, and comprehensively monitored.

Global projects should be identified in collaboration with the GNC-CT and partners and could contribute to the GNC work plan. This would ensure work contributed to building the capacity of collective nutrition responses. There may also be work outside of the GNC work plan that can still benefit from global response capacity.

Any non-deployment work and deliverables should be clearly outlined in a succinct ToR and other useful metrics recorded (such as duration, use, scope and number of users) to track progress and attempt to measure impact.

Finally, remote technical support has not been advertised nor exploited in the Tech RRT. This provides a promising approach where advisor expertise, and availability, can be used to improve responses on the ground. This could be structured as part of the NIE TAB technical advice component and coordinated with the GNC Help Desk. When remote technical advice needs are
identified (from the NiE TAB, GNC Help Desk or Tech RRT platforms) they could be shared with either the NiE TAB or the Tech RRT to identify the most appropriate and available individual.

More robust management and monitoring systems should be put in place to oversee and track advisor non-deployment work. This should include detailed work plans, frequent supervisor calls, detailed (at least daily) tracking of time spent and frequent engagement with colleagues over tasks. The management of non-deployment time rests with advisor supervisors. This makes sense, rather than management being centralized with the Programme Manager (already overwhelmed with stakeholder and programme management), but given the collective investment in each advisor, better efforts need to be made to show other stakeholders (particularly consortium members) how the time is used.

The main challenge with doing more substantial and longer terms pieces of work is that advisors need to be ready to be deployed. This could be overcome by having more than one advisor engaged in a given piece of work, so that if one is deployed the other can continue the task. Other such creative modes of working can allow for non-deployment work to continue and advisors to be available for deployment.

3.1.4. Other sectors

There is little appetite amongst informants for expanding into additional sectors however strong support for nutrition sensitive programming, intersectoral work and nutrition response preparedness.

Informants were generally opposed to the Tech RRT expanding into other sectors, citing the need to retain an important link to the nutrition cluster, the coordination burden of engaging with other mechanisms (e.g. health clusters) and the ability of the Tech RRT to ensure high quality support across multiple sectors as reasons that it would not be a good idea.

However there was strong support for the Tech RRT exploring how it can facilitate nutrition sensitive programming in other sectors, particularly health, WaSH and cash interventions. There was less agreement about the modality of such support but agreement that the Tech RRT should make efforts to integrate with other sectors. Informants generally agreed that coordinating with other clusters at a global level was likely to be less productive, however at country level collaboration could be exploited.

The Tech RRT could generate demand for nutrition sensitive programming in other national cluster coordination platforms (such as WaSH, FSL and protection), particularly for IYCF-E, SBC and assessment. If a strong emphasis on nutrition (and so within the GNC mandate) is made, the GNC could promote nutrition sensitive activities at global clusters’ level and encourage them to facilitate demand from national clusters. In addition, the Tech RRT could include the requirement to explore cross-sectoral collaboration in each ToR, or ensure during the development of ToRs, that partners on the ground investigate cross-sector possibilities with relevant clusters.
An IYCF-E deployment to Nigeria presents a good example of cross-sectoral work. In this case the advisor worked with both the child protection and the WaSH clusters in presenting opportunities for integration, leading workshops on integration and establishing a working group. It is unclear whether any concrete interventions came from this work, however the enthusiasm for integration (from the advisor and the clusters) is encouraging.

Integration across sectors is a perennial struggle for the humanitarian system, but given the flexibility that the Tech RRT enjoys (in developing context specific ToRs and being an independent actor), it is well placed to explore and learn from such collaboration. The Tech RRT could work with nutrition clusters, and partners, at country level to identify opportunities for integration.

The Tech RRT should also explore the opportunity of providing technical support in the implementation of the package of nutrition sensitive activities currently under development by the Inter-Cluster Nutrition Working Group (of which the Tech RRT are a member). The Tech RRT could position themselves as a key resource for clusters to engage to develop nutrition sensitive activities.

Finally, there is strong support for the Tech RRT to explore preparedness activities, but less clarity over how this might be provided or funded. Advisors could work with disaster prone countries to build surge capacity in nutrition, including contingency planning, capacity building and putting systems in place to respond quickly when an emergency does happen. This could provide a more substantial way of supporting countries during non-deployment time if the appropriate funding was identified. Permanent (and funded) advisors could begin doing this in their non-deployment time to build a portfolio in order to attract future funding.

The Tech RRT is not well placed to do research itself but could take advantage of its unique position by identifying opportunities for new research, documenting learning and operationalizing new evidence-based approaches.

The deployment time is too short for traditional research to be conducted by the Tech RRT, research requires different skill sets and is not seen a priority for the Tech RRT. However the Tech RRT is in unique position to identify and document good and bad practice and case studies leading to lessons learned across multiple contexts that could either be directly applicable to other contexts, or inform future research. The broad vision of nutrition in emergencies that the Tech RRT enjoys is a privileged perspective that could be better leveraged to identify what evidence is needed to improve practice. This could then feed research initiatives such as No Wasted Lives. A close collaboration with such research initiatives could also facilitate the uptake of newly developed approaches such as combined protocols for SAM and MAM treatment, reduced follow up for SAM treatment, family MUAC and integrated community case management plus SAM. These experiences could then be documented and feedback to further operationalization of a given approach.

3.1.5. How well known is the Tech RRT?
It is difficult to ascertain how well known the Tech RRT is without conducting a large-scale survey. The awareness of the Tech RRT was evaluated according to informants perceptions about how well
known the service is amongst certain constituents and what efforts have been made by the Tech RRT to increase awareness.

In general, informants felt that the Tech RRT was moderately well known globally. Nutrition cluster coordinators were found to be well aware of the service, but did not believe that all types of partners were aware of the service that is provided. It seems the Tech RRT is better known among the larger NGOs (who perhaps are better connected to activities at GNC level) than among the smaller NGOs. Informants suggested that awareness was better in those contexts with large nutrition programmes where Tech RRT has already provided lots of support (e.g. Yemen, Nigeria and South Sudan). Awareness is likely to have increased over time, but requests directly from NGOs (large or small) are still few, suggesting a low level of awareness if not of the Tech RRT itself, but of the expanded scope (available to support NGO programmes directly).

Although the Tech RRT lacks a formalized communications plan, important efforts have been made to generate demand for the service. This has included using media channels such as the GNC newsletter, Field Exchange, Twitter, LinkedIn and YouTube. The development of a brand and logo is likely to have helped individuals to associate outputs and advisors with the Tech RRT. The website has also been an important tool to share resources and publicize activities of the Tech RRT, including through blog posts detailing news and deployment activities.

The Programme Manager makes great efforts to continue a regular line of communication with nutrition cluster coordinators to foresee demand and identify countries that might need support, particularly when emergencies are foreseen (such as famine in April 2017). This also extends to the Regional Nutrition Advisor in UNICEF ESARO who has oversight of 22 countries and therefore able to identify opportunities for support. This should be extended to other regional hubs, both UNICEF and NGO, who often have a wide overview of their region.

Other stakeholders are also known to publicize the Tech RRT, including consortium partner advisors who ensure their country offices are aware of the Tech RRT, the GNC-CT who promotes the Tech RRT directly to 22 national cluster platforms as well as through the GNC Rapid Response Team, and OFDA who actively identify opportunities for the Tech RRT in discussions around responses.

The networks connecting these key stakeholders for the Tech RRT are likely to have generated most of the demand. Since such communication is largely through cluster platforms and consortium partner NGOs, this strategy risks overlooking the smaller and less established NGOs in nutrition. The Tech RRT should develop a communications plan that targets smaller and especially local NGOs.

WFP has also been largely omitted from the communications strategy. Inclusion of WFP more formerly in the Tech RRT would open up a huge network of nutrition actors who may benefit from Tech RRT support.

Although the GNC-CT does promote the Tech RRT to national platforms, the GNC website could be leveraged to increase Tech RRT demand. The website is likely to be frequented by nutrition cluster coordinators and partners, therefore a section on the website promoting the Tech RRT alongside the Rapid Response Team, would further increase demand. In addition, The Emergency Nutrition
Network is frequented by nutrition practitioners particularly those experiencing technical challenges – the same constituents that might benefit from Tech RRT support be it remotely or in terms of a deployment. Therefore a stronger link between the ENN and Tech RRT (for example by including a Tech RRT “button” in the technical questions section to sign-post to Tech RRT website) will make the service more widely available and is likely to further increase demand.

Finally, communication outputs have all been in English with only the production of a flyer being in French. The Tech RRT should explore prioritizing some communications in Spanish, French and Arabic to demonstrate availability and generate demand in the Americas, West Africa and the Middle East.

3.2. Effectiveness

- How effective were deployments in reaching their objectives?
- Was the monitoring and evaluation plan effective in gathering information to measure the success of the project?
- Was the Tech RRT effective in coordinating with relevant partners/bodies?
- What real difference has the project made on humanitarian response broadly (either globally or at a country level)?

Effectiveness of deployments was evaluated through interviews and analysis of end of mission reports and advisor performance evaluations. An assessment of the monitoring and evaluation system was also made, as robust monitoring and evaluation (M&E) systems allow for the on-going monitoring of effectiveness and identification of corrective action where needed. Coordination with relevant partners/bodies was assessed given appropriate and effective coordination is critical to the effectiveness of Tech RRT activities. Finally, elements of the Tech RRT that increase effectiveness and are likely to lead to better impact (i.e. best practices) are highlighted.

3.2.1. How effective were deployments in reaching their objectives?

Deployments were largely effective in meeting the needs of the country programme as defined in the assignment ToR.

Out of the 14 deployments analysed only 7 were able to fully complete the objectives as outlined in the ToR. Reasons for the inability to complete the objectives included the requirement for an Arabic speaker, challenges with engagement from the government and from partners, delays in survey implementation and challenges related to the ToR17. On at least 5 occasions the ToR posed a challenge to the deployment, either it was deemed too ambitious for the length of deployment or changes were made during the deployment, making completion in the given time difficult. End of mission reports regularly contained feedback relating both to the details of the ToR itself or the process of developing the ToR. Often the difficulties stemmed from who was engaged in the development in the ToR. Sometimes key government officials were not involved in ToR

17 This is not necessarily a negative aspect since ToRs should be revised and adapted to a changing context and increased familiarity with the situation when the advisor is on the ground.
development, and sometimes partners, expected to take part in the deployment, were not consulted. A common complaint was that ToRs were overly ambitious for the length of deployment. Whereas in some cases it may not be possible to foresee precise challenges and what is/is not possible during a deployment, engagement from all the key stakeholders in defining the details, would certainly go some way in ensuring the ToR both respond to the needs on the ground and are realistic in the given time frame. However this should be carefully balanced with the required speed of deployment given increased engagement is likely to increase delays in finalizing the ToR. It could be that ToRs are finalized in country when engagement with actors (such as government) could be easier.

The ability of advisors to continue support remotely, despite delays when in country, allowed objectives to be completed on at least one occasion (Yemen assessment deployment). The ability to provide on-going technical support is a strength of the Tech RRT.

3.2.2. Was the monitoring and evaluation plan effective in gathering information to measure the success of the project?

The monitoring and evaluation plan is effective in measuring the success of the project at the output level, but has no means to measure success at outcome or impact level.

The Tech RRT M&E plan is focused on the following four indicators. Information for indicators 2-4 is collected during deployments and included in end of mission reports.

1) Percent of L3s and high priority responses where technical support has been established and/or supported in a timely manner
2) Number of nutrition and WASH cluster partners trained on CMAM, IYCF-E, SBC and assessment
3) Number of trainings provided by all Tech RRT advisers in their areas of expertise during emergency deployments
4) Number of new additional districts or health facilities implementing CMAM, IYCF-E, SBC and nutrition assessment

These indicators go some way in showing what reach the project has had and what the potential impact could have been. However they are limited in showing what impact the deployment has had on the quality of the nutrition response. Given the complexity and magnitude of most humanitarian emergencies a reliable measure of global impact is unlikely to be achieved. But there are available options to understand how the quality of the response is likely to have been improved as a result of deployments, and to give some measure of the outcomes achieved and the potential impact these have had on the response as a whole.

In the second half of 2017 the Tech RRT introduced user satisfaction surveys and developed the performance evaluation adding sections on impact and sustainability. These are both filled out by the in country supervisor and other users shortly after the deployment therefore the assessment on
impact is speculative. These have gone some way in collecting perceptions from actors on the potential impact of the deployment.

An individual impact assessment method for each deployment should be detailed in every ToR. This would clearly outline the intended output, outcomes and impact of each activity (if appropriate) and deployment. This “impact pathway” should be refined in country during the first days of the deployment and followed up 3-6 months later. The pathway would link outputs (e.g. training) with outcomes (e.g. improved IYCF-E counseling) and give greater clarity on how this improved capacity has affected the response. This could take the form of a simple table, with some indicators, data sources and data collection points identified. This would not necessarily be additional data that is not already available, but it would mean documenting it. Existing data should be utilized where possible, and the entire process be light, but still allow for some plausible conclusions to be made.

It’s unlikely that the improved counseling (for example) could be directly attributed to better behaviors, but plausible linkages could be made. The Tech RRT should follow up the continuation of the work (at a time suitable to the case but likely to be at least 3-6 months later) to gauge the potential impact of the deployment on the response. This could be combined with further coaching or support to make it an attractive prospect for the field teams and should be done remotely where possible. In summary, this should allow for a reliable measure of the outcomes achieved and give some idea of the potential impact on the response.

Although not intended to measure outcomes, two examples showed the affect deployments had on the nutrition response. First in the second South Sudan IYCF-E deployment, follow up to trainings found that those trained were not implementing IYCF-E knowledge gained during the training 4 months earlier, and in some cases the wrong individuals (i.e. those without the authority to implement new knowledge) were trained. Second, a later (unrelated) deployment to Turkey enabled a former IYCF-E advisor to see that the technical working group set up during a deployment a year earlier was still functioning and ensuring a better quality IYCF-E response. A more systematic M&E system would allow for better documentation of such examples, achieving both poor and strong outcomes and potential impact.

More emphasis should also be put on the demonstrating good (and bad) practice with qualitative methods. This should be an integral part of each deployment ToR. The key would be providing advisors with the tools and awareness to identify promising, proven and bad practices and then using non-deployment time to elaborate on them. These could be both programmatic and related to the impact of the deployment itself. Similar practices or challenges could be identified across deployments and contexts, and aggregated together for both learning and accountability purposes. The proposal indicates it is the role of the Steering Committee to ensure lessons learnt and best practices are documented and disseminated. Given the Programme Manager currently preoccupied with the everyday coordination and functioning of the Tech RRT, arrangements should be made to engage the Steering Committee in this work.

The end of mission reports and post deployment evaluations could also be used to aggregate ongoing challenges and make corrective action to the deployment process. The current system does not perform any aggregation across contexts beyond the key indicators and deployment data.
3.2.3. Was the Tech RRT effective in coordinating with relevant partners/bodies?

The Tech RRT was found to coordinate very well at country level, and largely well at global level.

Global level coordination with UNICEF (programmes team in NY), GNC-CT, consortium partners, the Save the Children Humanitarian Support Team (HST) and the SMART Project was evaluated through informant interviews and project documents (including reports). Country level coordination was also evaluated through analysis of end of mission reports and interview with cluster coordinators and advisors.

In terms of deployments, coordination is with UNICEF and GNC-CT has been strong. Inclusion in the Deployment Steering Committee has ensured valuable insights from the cluster perspective (GNC-CT) and ensured overlap with other technical surge capacity being deployed has been avoided (UNICEF). The key objective is to make sure that the limited resources available to any emergency are well used. This has been largely successful, with one exception in Nigeria where a UNICEF Nutrition Specialist was deployed at the same time as the Tech RRT IYCF-E Advisor.

In terms of Tech RRT project development coordination with UNICEF and the GNC-CT has been less strong. There is a feeling amongst informants of either a reluctance or inability of the Tech RRT to coordinate regularly with GNC-CT. That said there is an agreement within the Tech RRT Steering Committee and the GNC-CT that a closer collaboration outside of deployment decisions would be a welcome development. This has begun to take shape with monthly calls between the Tech RRT Programme Manager and the GNC Coordinator and UNICEF (engagement between Tech RRT and GNC-CT and UNICEF is addressed in more detail in Section 3.3.3).

Infrequent communication with UNICEF on issues related to the development of the Tech RRT and the NiE TAB, has contributed to a lack of clarity on how they would work together to avoid overlap and maximize resources available to emergencies. Since the October 2017 GNC Meeting there is greater clarity on what the NiE TAB service might look like, but still limited clarity on what it means for the Tech RRT. Again, recently organised and regular calls with UNICEF will serve to allay these anxieties and develop a more collaborative future. Close collaboration with the GNC-CT and UNICEF is critical as the Tech RRT moves into a period of development and needs to re-shape itself (to some extent) as the NiE TAB becomes operational.

Coordination between the Tech RRT and the SMART Project has been strong. Initially there was some uncertainty from field level partners and also amongst SMART Project/Tech RRT as to where requests for SMART assessment support should be directed. In early 2017, it was decided that the Tech RRT should liaise with the SMART Project on all SMART requests and requests would generally be divided as follows; SMART Project provides technical support at national level (support with training and utilization of nutrition data at a national level) and the Tech RRT provides sub-national survey level support with an emphasis on the practical implementation of assessments.
Coordination between the Tech RRT and the Save the Children HST has been exemplary. HST has been used on five different occasions (IYCF-E deployments in Ethiopia, Iraq, Nigeria, Syria/Turkey and Yemen) to respond to requests when the IYCF-E advisor has not been available. The ability of the Tech RRT to tap into this resource in such an efficient fashion is made easier by the fact the Save the Children steering committee member also manages the HST nutrition team of 6-8 nutrition specialists.

The lack of coordination or collaboration with the WFP in the development or implementation of the Tech RRT is surprising given the status of WFP as a key player in emergency nutrition at both global and country level. WFP has a large network of partner organisations that work in both the treatment and prevention of malnutrition and therefore are likely to experience gaps in technical expertise. Engagement with WFP and partners could also allow Tech RRT advisors to work on the continuum of care between treatment of SAM and MAM, and prevention activities.

At country level Tech RRT advisors have tended to facilitate good coordination with nutrition cluster coordinators (or relevant coordination mechanism), UNICEF and cluster partners. This included clearly communicating the scope of the ToR at the beginning of the deployment, establishing focal points and lines of communication, and making it clear that they are there to work for the collective. Generally, partners have been eager to be involved in Tech RRT work contributing resources (e.g. cars and enumerators for surveys) and facilitating meetings. Advisors worked within clusters or sub-groups (e.g. IYCF Technical Working Groups) and generally offered all the support they could.

3.2.4. What real difference has the project made on humanitarian response broadly (either globally or at a country level)?

Without follow up after the deployment it is difficult to ascertain the long-term impact of deployments. The monitoring and evaluation system is not geared towards measuring likely, or even plausible, impact on disaster affected communities. The data collected is focused at the output level (i.e. number of people trained), providing good information on the likely reach of the intervention but none on the effect this training has had on the people affected by emergencies. That said the evaluation was able to identify the following factors that are likely to have increased the effectiveness of the deployments and therefore optimized impact on the ongoing response:

1. **Active engagement with partners in the development of ToRs.** For example, in the Nigeria CMAM response in 2016 partner engagement in the development of objectives was limited, making it difficult to begin work straight after arriving.

2. **Engagement in and ownership of work from partners.** For example the SBC deployment in South Sudan was met with poor engagement from the requesting partner, and there is an absence of evidence that barrier analysis information was used. However the IYCF-E deployment in South Sudan was part of a broader process to develop IYCF-E in country, and therefore UNICEF, partners and the IYCF-E technical working group were heavily invested in the advisors’ work.

18 Established and coordinated by the cluster coordinator
3. **Clear and achievable ToR for the given timeframe.** If the deliverables are overly ambitious for the deployment, the advisor will not be able to finish and provide a thorough and comprehensive debriefing and handover. For example, the first Nigeria IYCF-E deployment included objectives to develop an IYCF-E strategy for the North East, which was not possible within the short deployment.

4. **Selecting individuals with the appropriate profile to be trained.** It has been important that those trained are the right kinds of staff that can influence practice in their organisations. For example, in South Sudan IYCF follow up deployment it was found that some of those trained were not necessarily leading IYCF-E services. This is an important part of in-country planning of deployment activities before the advisor arrives, and should be reflected in the ToR.

5. **Effectiveness of training approach.** Tech RRT advisors should have strong competencies in training and aim to use the most cutting edge and effective training approaches. Coaching approaches adopted during the South Sudan IYCF and Ethiopia CMAM deployments were seen as novel and effective.

6. **Timing of deployment.** Deployments should not be too early (for example during the Haiti response where IYCF was not yet priority) or too late.

7. **Participatory action plan with resourced, time bound objectives, with specific individuals identified, should be developed with multiple stakeholders, prior to the advisor’s departure.**

8. **The ability of advisors to provide follow-up support remotely.** Where advisors are available to follow up recommendations and provide additional remote support, the utility of the deployment will be maximized. For example, with the Yemen assessment deployment, the advisor was able to follow up and support completion of ToR elements not finished during the deployment.

9. **Commitment from in-country partners to continue the work or follow up.** Although advisors cannot guarantee the operational commitment from partners, they can increase accountability to the recommendations. Each recommendation should be developed with relevant partners and each partner accountable to following up each recommendation identified. Commitment from the cluster coordinator (or UNICEF or government) to follow up recommendations with partners should also be obtained where possible. Remote follow up from the advisor could help to enforce deadlines, provide additional support and trouble shoot where necessary.

10. **Availability of human resource to continue work** whether it be partners taking it on or dedicated resource such as a UNICEF Nutrition Specialist being identified.

11. **Financing for on-going activities.** Where needed additional resources should be identified to ensure follow on activities can start in a timely manner. For example in the CMAM deployment to Ethiopia there was lots of enthusiasm over continuing the cascade training but no finances to do so.

12. **Ensure recommendations and training are made available to as many partners with identified capacity gaps as possible.** Given the scale and complexity of most humanitarian crises Tech RRT deployments need to take measures to ensure direct frontline support

19 On a positive note, a strength of the follow up deployment was that these issues were identified and could be directly resolved with the nutrition managers to ensure the trainings were optimized

20 Through a cluster coordination team led capacity assessment
extends beyond the few NGOs supported during deployments. For example, in South Sudan a CMAM quality assurance deployment was able to visit 10 OTP sites out of over 700 in the entire country. The development of feasible recommendations based on these field sites but developed in collaboration with a broader set of partners (within the cluster or CMAM technical working group for example) should enable the technical input from the Tech RRT advisor to have broader implications for the collective response. Such efforts would also respond to a concern that support provided by the Tech RRT during a short time frame to the cluster platform is not trickling down to NGOs, particularly smaller potentially weaker (technically) NGOs. This could be avoided by ensuring weaker partners are supported directly. However that may not be possible or an appropriate use of resources. So efforts should be made to ensure Tech RRT advice is documented and shared with a wider range of partners to benefit from technical support.

3.3. Efficiency

- To what extent does this operational model facilitate rapid deployments?
- To what extent was the Tech RRT mechanism efficient in deploying advisors?

The investigation into the efficiency of the Tech RRT was designed to analyze the current operational model including looking at governance for the consortium arrangement, field based administrative arrangements and the dynamic between the Tech RRT and the GNC-CT and UNICEF. Furthermore, each step in the deployment process is also investigated, looking at the origin of request, the development of terms of reference, Deployment Steering Committee approval, OFDA approval and the 72 hours from request to deployment target. Finally, an assessment of how the Tech RRT and the NiE TAB should connect is provided.

3.3.1. To what extent does this operational model facilitate rapid deployments?

The Tech RRT consortium has functioned well with efficient governance systems and strong relationships between consortium members.

The Tech RRT operates a consortium model, whereby three NGOs receive funding from the donor (OFDA) to implement the programme. The Steering Committee and Deployment Steering Committee have worked well in allowing each consortium partner to have influence of the management of the project, and consensus to be reached on deployment decisions in an efficient manner.

The consortium model has shown some advantages that should not be overlooked. First the combined reputation of the three NGOs and collective technical knowledge, is a strong asset in giving confidence that country programmes will be receiving a high quality service through the advisor but also that the technical back up is available should an advisor require additional support. Second, the presence of at least one of the consortium NGOs in most contexts, gives the Tech RRT the ability to utilise their support and avoid the need for lengthy administrative processes.
Standby Partnership Agreements between UNICEF and partner agencies have facilitated smooth deployments, but alternative arrangements (e.g. using the LoU) have been problematic.

Typically advisors are deployed to countries and hosted by UNICEF under their agencies Stand By Partnership Agreement with UNICEF. This arrangement ensures UNICEF make all administrative and logistical arrangements required to support the work in the country. In other cases, the advisor has been hosted by their contracting partner agency.

When either arrangement has not been possible a Letter of Understanding (LoU) has been employed. In such situations the host agency has not been the advisors contracting NGO (e.g. IMC advisor in Ethiopia was hosted by Concern). Use of the LoU has been a steep learning curve and has yet to settle into an effective and workable solution. Each occasion will always be context specific (depending on the partner agency in country and the context) however it should become more straightforward as the LoU is aligned with consortium partner internal procedures. That said, although the option of such an arrangement should be available, the Tech RRT should endeavor to ensure the presence of a consortium partner agency is exploited as this could reduce the administrative burden.

3.3.2. To what extent was the Tech RRT mechanism efficient in deploying advisors?

On the whole, the deployment mechanism works well in enabling rapid deployments following requests, whilst ensuring appropriate engagement (at field level) and coordination (at global level). The Programme Manager plays a critical role in ensuring the process works efficiently including a significant burden of stakeholder management and administration. The evaluation analysed the deployment process from the origin of request to post-deployment activities.

Origin of request/initial idea
Requests have tended to stem from direct contact between the NCC/NGO and the Programme Manager however referral from the GNC-CT or requests made through the Tech RRT website request form have also led to requests being made. Most of the requests come from the Programme Manager being proactive and reaching out to cluster platforms on a regular or ad-hoc basis. GNC-CT initiatives such as a system wide alert for famine in April 2017 have also led to three deployments (Ethiopia IYCF-E, Somalia IYCF-E and Nigeria CMAM). The Tech RRT however does not systematically record the origin of each request. Inclusion of such information in the monitoring system would allow the Tech RRT to better understand the awareness of the Tech RRT mechanism and inform the communications strategy.

Development of terms of reference (ToR)
The time taken and process for developing the ToR was found to be the main sticking point in the efficient deployment of advisors. ToRs tended to be compiled by cluster coordinators in collaboration with cluster partners. Often these would either lack precision or would be too ambitious for a 6-week deployment. The subsequent development of a more appropriate ToR often took days, and sometimes weeks, to complete. The ToR development process is a key step in ensuring the deployment is appropriate to the needs on the ground, ownership from partners at
field level and appropriate planning of deployment activities, yet for a rapid deployment it needs to be done quickly (see appropriateness/relevance section for more on timeliness).

Deployment Steering Committee approval

Once ToRs are finalized the Deployment Steering Committee (DSC) makes a decision over whether to deploy an advisor. Their judgment is based on whether the emergency is of adequate severity and there is a lack of technical expertise on the ground to fulfill the required need. DSC members are required to approve or disapprove of the deployment by email. The DSC makes the decision based on the appropriateness of the Tech RRT for the requested work and the availability of other surge capacity. The Programme Manager, in collaboration with the consortium partners, decide which Tech RRT advisor, Save the Children HST member or consultant, is available and most suited to the work. The DSC works on a one-agency-one-vote system however in practice a consensus has always been reached without major disagreements. This has always been done rapidly with all DSC members recognizing the importance of a prompt decision being made.

OFDA approval

Deployments also require approval from the donor OFDA. This was not initially the case however following a decision to deploy an SBC advisor to support the European refugee crisis in Greece/Serbia in 2016, OFDA decided to introduce this step. OFDA are unable to respond to refugee crises, given that it is the responsibility of another United States Government department, the Bureau of Population, Refugees and Migration.

OFDA tend to assume the responsibility to ensure deployments fit with OFDA action in country, how it links up with UNICEF’s role, and encouraging activities that will lead to practical improvements in quality. In most cases, OFDA raised questions that require the Programme Manager to return to the requesting country for responses. This adds an additional step to the ToR development process, which even before the approval process is activated tends to take time. The concerns raised by OFDA have always been valid and have served to improve the quality and appropriateness of the deployment, yet they tend to be related to the details of the deployment, rather than the deployment itself. OFDA have sometimes advised the Tech RRT to proceed with necessary travel arrangements whilst the questions are addressed, yet it is still perceived that these questions have caused the delay when they come just prior to the start of the deployment.

There are also concerns that the strong involvement from OFDA does not allow the Tech RRT to respond to need only and therefore compromises humanitarian principles. Although this is the case for the free provision of advisor support, the Tech RRT is still able to use the mechanism to respond to refugee crises (or any future response that OFDA does not want support) if the deployment itself has alternative funding. The stake OFDA has in the Tech RRT obliges this level of control, and there will be weak basis for challenging it until Tech RRT is able to expand its funding base.

72 hours from request to deployment

As detailed in the relevance/appropriateness section the target of deploying 72 hours from receiving the request was never met in the 14 deployments analysed. This has largely been down to the length of time it takes to develop a ToR and the time it takes for visa applications. In terms of ToR development this has been both justified (ensuring engagement in development from country level
partners) and not (unresponsiveness to emails and lack of prioritization). The length of time it takes to receive visas is largely out of the control of the Tech RRT, however in some situations selection of an advisor of a certain nationality could expedite the process if the advisor pool was adequately diverse (see section 3.1.2 Deployment Work for more analysis on timeliness).

Management of Tech RRT

The management of deployments and the Tech RRT project as a whole currently rests entirely on the Tech RRT Programme Manager. This makes up a substantial amount of administration and stakeholder management. As a result, management issues dominate the work plan of the Programme Manager and less urgent, but equally important areas of work are partly, or completely, neglected. This includes project development, fundraising, development of monitoring and evaluation, learning, and communications.

The project has a part-time Deputy Programme Manager but it appears this role has not been fulfilled for most of 2017 due to other priorities and deployments (one on behalf of the Tech RRT). Therefore the Deputy Programme Manager role should be re-established and/or alternative arrangements made that allow the Programme Manager to commit more time to project development, learning, and knowledge management. As indicated elsewhere learning and demonstration of the Tech RRT’s added value (through effective M&E) is key to building a funding base (whether that be in terms of cost recovery or donor grants) and therefore a critical element of continuing the Tech RRT.

3.3.3. Engagement between the Tech RRT and key stakeholders

Global Nutrition Cluster- Coordination Team

The GNC-CT seems to be unsatisfied with the collaboration during the Tech RRT project and consortium partners recognize that engagement with the GNC-CT has not always been optimal. There are divergent views on why this might have been the case but it seems that the obligations the Tech RRT has to the GNC work plan underlies the misunderstanding.

The GNC-CT and partners identified the need for rapid technical support and integrated the provision of technical support to cluster coordination platforms into the GNC work plan and strategy. Partners are invited to deliver on parts of the GNC work plan through funded projects such as the Tech RRT. Therefore, the GNC-CT wanted to report on the activities of the Tech RRT. The Tech RRT accepted for the GNC-CT to report what has been achieved as part of the GNC work plan but there was also a feeling that the GNC-CT was overstretching its involvement in the Tech RRT and taking credit for its achievements. This appears to have been the underlying cause of the Tech RRT distancing itself from the GNC-CT.

It is clear that the Tech RRT wants to have a strong and mutual collaboration with the GNC-CT and that the sub-optimal engagement during the project has been a limiting factor. There are a number of reasons why better collaboration would be beneficial to develop.

First, the GNC-CT tends to have a good understanding of the situation during nutrition responses, and therefore are a valuable asset in both individual responses and more strategic development of
nutrition response capacity. Second, the GNC-CT manages the RRT, a mechanism with many similarities to the Tech RRT (given that the RRT guided the start-up of the Tech RRT) and who are likely to share similar challenges and learning that could benefit the operations of both. Third, they have leverage with UNICEF and other actors at field level that could prove useful particularly when pushing for additional technical support to be provided. Fourth, a more formalized arrangement for technical requests (both deployment and remote technical advice) between the GNC Help Desk and the Tech RRT should be exploited to match need with resource more effectively.

In recent months, the working relationship between the GNC-CT and the Tech RRT has been good. This has been helped by regular calls between the Tech RRT Programme Manager, the GNC-CT and UNICEF. The Tech RRT should go further and define what should be achieved from the collaboration and specifically what topics should be covered during the monthly calls. This will help the collaboration between Tech RRT and GNC-CT to be more effective, from a coordination and information sharing perspective on both individual deployments and on strategic discussions around the development and future of the Tech RRT.

UNICEF

The Tech RRT was established because there was a clear need for specialized technical support during emergencies. It is widely accepted that UNICEF are, and should be, technical lead for nutrition in emergencies. They are best placed to oversee what technical capacity there is at national, regional and global level, what is needed, and what can be provided.

There is a common concern that the Tech RRT is filling a gap where UNICEF should be providing support, and that the Tech RRT undermines UNICEF’s accountability to the sector in providing technical leadership as the Cluster Lead Agency. However others believe that partners, such as the Tech RRT can still provide technical support in a complementary and coordinated way. As one informant said “its not who provides the support but that it exists” and that coordinated efforts are made to ensure all available capacity is optimized, and the resources are in place to sustain the support with appropriate lines of accountability when support is not provided.

UNICEF, and the GNC-CT, is already involved in deployment decisions, which aims to ensure duplication is avoided. Engagement on provision of technical capacity following deployments should be strengthened to ensure appropriate resources are identified and deployed in a timely fashion. In some cases the Tech RRT builds the capacity of existing staff who are able to continue the work after the deployment, in other cases the work by the Tech RRT creates more work that needs to be continued by dedicated resources. The Tech RRT advisor, and UNICEF, should plan for the continuation of work from day 1 of the deployment. This may require the recruitment of additional resources by UNICEF to continue the work with the government.

Nutrition in Emergencies Technical Advisory Body

For the past few years UNICEF have been working on developing a mechanism to address nutrition technical needs in humanitarian contexts. The new mechanism will consist of 3 different areas of work lead by UNICEF with NGO co-leads for each area:

1. Provision of technical advice in implementing existing guidance
2. Support in the development of technical guidance

The Tech RRT has been involved in the third area through the deployment of advisors to nutrition emergencies. The first area, which will tend to involve remote helpdesk-like support, has been less of a priority for the Tech RRT, although some remote support work has been provided.

Informants generally believed that there is a strong role for the Tech RRT under the organization and guidance of the NIE TAB. There is both an appetite for a common approach and also a desire to hold on to the successes of the Tech RRT. The Tech RRT has developed a system that for the most part provides appropriate technical support in an efficient and effective manner. There are strong advantages of being included and coordinated with the TAB but also maintaining the operational independence that the consortium currently enjoys. Advantages include the coordination of all available capacity for any given emergency situation, ability to attract additional funding and ability to match technical needs (whether remote, direct support or guideline development) with the appropriate capacity available. It is likely that the TAB mechanism will prioritize support to UNICEF and cluster platforms, and not directly to NGOs. Independence will allow the Tech RRT to support NGOs directly when needed and continue to deploy advisors relatively rapidly. Furthermore, although some seed funding has been identified there remains uncertainty around the on-going funding arrangements for the TAB mechanism. Therefore it would be better to maintain independence to ensure autonomous efforts for fundraising can continue.

3.4. Sustainability

- What are the most appropriate ways to sustain the Tech RRT?
- Could a cost recovery model be an appropriate option for the Tech RRT? What would be the advantages and drawbacks of such a model?
- What are funding mechanisms/sources that could be viable to finance the Tech RRT? (e.g. crowd funding, potential other donors)

Sustainability was evaluated in terms of ways in which the Tech RRT has been financed to date, and how if can be in the future. This included looking at recent cost-recovery experiences, how the Tech RRT can capitalise on this funding stream despite some key concerns.

OFDA have provided almost all of the funding for the Tech RRT and deployments. However OFDA funding is limited in terms of time and scope. It seems possible that funding will not continue beyond March 2019 and even if it does its possible that there will be further reductions in the budget, as was the case for the latest round of funding. OFDA funds can also not be used to respond to refugee situations. For example, two deployments to support the Rohingya refugee situation Bangladesh have had to find alternative funding. Therefore the Tech RRT needs to broaden their funding base.

Informants were asked how they thought the Tech RRT could be financially sustained without OFDA funding. Ideas were limited to an imperfect, albeit possible, cost recovery model, and a suggestion of certain additional donors that have yet to be approached. A number of key humanitarian nutrition donors (such as ECHO and DfID) have already said that despite their support for the mechanism they
are not in a position to fund such a mechanism. Although representatives of such donors were not interviewed, it appears that difficulties in demonstrating the added value of rapid response mechanisms are among the reasons funding is not forthcoming.

3.4.1. Cost recovery
Without on-going core funding, a cost recovery model seems to be the only available option for sustaining the Tech RRT in the long term. Despite some concerns, recent examples show that requiring a financial contribution from actors at field level is viable.

A cost recovery model, whereby partners that request Tech RRT support are required to pay all, or some, of the costs is already in development. There has been experience in using this on four different occasions. Two in Bangladesh (in 2017) one where Save the Children and another where BPRM (via UNICEF and Save the Children) were able to cover the costs of the deployments, and two others currently under discussion, where CARE Bangladesh are going to cover the costs of the deployment using Food for Peace funds via UNICEF and another where WFP in Yemen will cover the costs of an SBC deployment. These four experiences are worth examining.

The two Bangladesh experiences in 2017 saw the Save the Children employed Tech RRT advisor and a Save the Children consultant deployed. Save the Children covered the Tech RRT advisors salary and operational costs (flights etc.). This was potentially a unique situation where available staff were used to develop an area of work (IYCF-E) for the collective that Save the Children has a key role and interest in developing, hence their willingness to fund this collective response. The Bangladesh CARE experience was more elongated and problematic. UNICEF required the Tech RRT to support the Nutrition Sector and CARE as CMAM leads. Given that CARE already had a Programme Cooperation Agreement (PCA) with UNICEF, and IMC are not present in the country, it was easier to pay the Tech RRT (IMC) via the CARE PCA. Delays in establishing/amending the PCA between CARE and UNICEF created delays in the deployment. Given that UNICEF PCAs are a common source of funding for nutrition activities, this is likely to be a more frequent arrangement in the future. The Yemen experience is less complicated with WFP employing an IMC Tech RRT advisor through an amendment to an existing FLA between WFP and IMC. The advisor will be hosted by IMC and work directly with the nutrition cluster.

Without more substantial funding, which at the moment seems unlikely, cost recovery is the only viable option. There are three main concerns with this model:

- Ensuring cost recovery does not reduce demand
- Working out the level of cost recovery for each deployment
- The administrative process in receiving funds and the time taken

Informants are in agreement that a cost recovery model should not prohibit support when needed and should not decrease demand. This is a concern especially where funding is not available for an emergency and where technically weaker (and therefore in greater need of the Tech RRT) and less well-off organisations require support. In such situations, a greater contribution in support from the Tech RRT would be appropriate, and providing enough situations are cost-recovered (throughout the year) it should be possible. The Tech RRT should develop a costed annual work plan and determine
how many deployments can be fully funded by the project and how many can be done with what cost-recovery levels.

A critical element is how the Tech RRT is able to determine the availability of funds to country level partners. Ideally there would be a way of means testing organisations taking into account funds available to the partner and more generally at county level. There is no easy way of determining what organizational budgets are so Tech RRT should encourage transparency from country level partners when negotiating the budget and Tech RRT vs. Partner contributions. Throughout the negotiation it should be made clear to country partners that there are limited funds available from the Tech RRT and any funds spent where funds are available means that other lesser-funded emergencies will not get the opportunity for support.

The administrative process for cost recovery is the main obstacle to rapid deployments. Internal cost recovery models for Save the Children and UNICEF have worked for emergencies and these systems should be investigated to determine what works well. These are internal, and likely more straightforward, but could provide useful learning. Furthermore, following a reduction in funding and focus on specific countries, the Coverage Monitoring Network also adopted a cost recovery system. This was a simple consultancy like arrangement, where the host agency (Action Against Hunger UK) invoiced the requesting NGO and the work was delivered. These experiences and those already conducted with Tech RRT (Bangladesh and Yemen) should be analysed and inform the cost-recovery processes for the Tech RRT.

Added value of Tech RRT

The Tech RRT needs to be aware of what other options are available to country programmes to seek support and what the advantages are to using Tech RRT over directly employing a consultant (for example). When country partners were asked why they asked for Tech RRT support and did not go through an alternative channel, the fact that the service was free was a frequent response. However other reasons related to timeliness and quality also emerged. The Tech RRT is able to identify and rapidly deploy high quality advisors, as well as provide technical backstopping if needed.

The recent SBC deployment to Yemen highlights two lessons. First that necessary funds can be found for deployments and second the Tech RRT has greater added value than just being free. This deployment has been under discussion since early 2017 when all deployments were funded. Due to various setbacks the deployment is still happening in 2018 despite cost-recovery requirements in place. This is because the Yemen nutrition cluster has been able to identify funds and is willing to pay for the support as they value the expertise and reputation of the Tech RRT.

Other potential consequences of cost recovery

The cost recovery model could potentially have a positive effect on deployments. There is a feeling among some informants that the fact the service is free has caused an underlying lack of respect for the process on the part of the requesting partners. This has been particularly demonstrated during the sometimes-lackluster approach to finalizing ToRs. The introduction of cost implications could serve to increase accountability to the Tech RRT and responsibility on the deployment, and therefore avoid situations where requesting partners are disengaged and/or disinterested.
Identification of funds

A further concern about the cost recovery model is where agencies are going to get funds from when they are needed rapidly. First, technical support provided by the Tech RRT has largely been to protracted emergencies where technical deficiencies are known, and therefore plugging the resource gap can be planned in advance. So agencies need to think in advance when preparing proposals what sort of short-term technical support they might need. OFDA, and possibly other donors, would support budget lines included for technical assistance in specific project budgets. Funds are available for technical support especially in the relatively well-funded emergencies to which the Tech RRT is frequently deployed (e.g. South Sudan, Yemen and Syria).

When rapid support is required and funding is identified but may take time for the administrative processes to transfer the funds, the Tech RRT should advance support for the deployment. Given the Tech RRT has some funds to cover full deployments, in situations where an agency has funds but is unable to transfer immediately, they should be able to front up the finances to enable a rapid deployment. Administrative procedures internal to IMC (lead agency) should be optimized where possible to ensure an agreement is in place and funds can be disbursed in a timely manner.

3.4.2. Core funding

Although funding for each deployment should, where possible, be secured the Tech RRT should remain available where there is need but not funding through core funding. Such unrestricted funding is difficult to obtain however strong evidence based (through a rigorous learning and M&E system) and compelling arguments could support a strong proposal for funding the Tech RRT.

There is currently a lack of global level funding pools within the traditional donors that would support a project like the Tech RRT. Such funding tends to go towards UN agencies and not NGOs. Therefore the Tech RRT should target less traditional donors. Although it was out of the scope of the evaluation to conduct a funding analysis a number of donors did emerge that informants felt could be potentially suitable for funding the Tech RRT. There are as follows: Emily Crook Foundation, Children’s Investment Fund Foundation (CIFF), Irish Aid and the Bill and Melinda Gates Foundation. Given the current limitations in financing refugee settings with OFDA funds, the Tech RRT is also encouraged to seek a strong partnership with UNHCR and secure funding directed at refugee settings.

3.4.3. Tech RRT Management

Monitoring, evaluation and learning (MEL) is an area that is under invested in the Tech RRT. This appears to be due to the prioritization of the day-to-day function of the deployment mechanism and administrative support to the project (e.g. fulfilling donor reporting requirements). MEL is critical not only to ensuring quality of support provided and accountability to the donor, but also in building a case for funding the Tech RRT.

The Tech RRT should refocus the use of the Programme Manager and Deputy Programme Manager (DPM), and incorporate more support from Steering Committee members, to allow for more investment in evidence generation. This could mean the DPM taking on more responsibilities in managing deployments and advisors, freeing up the Programme Manager to first develop MEL.
systems and second support evidence generation. Over the past year the DPM has had limited involvement in the Tech RRT management and this should be re-instated. The new project only funds 2 days a month of the DPM and therefore additional funding should expand this. This could also mean engaging Steering Committee members more strongly in learning activities, for example supporting advisors to write up best practices that they identify and aggregating experiences (see section 3.2.2 on M&E for more detail.)
4. Main findings

General

1. The Tech RRT has provided highly qualified technical expertise in a rapid and efficient manner to clearly identified gaps in capacity.

2. The Tech RRT is well placed to enable cross-fertilization of learning from one context to another and the use of cutting edge best practice in emergency settings.

3. The relative detachment from the complexities of emergencies that the Tech RRT advisor enjoys, whether supporting remotely or in person, allows for focused and efficient support to be provided.

4. Given the multiple stakeholders involved and the need to demonstrate effectiveness, fastidious monitoring of time spent and outputs, as well as comprehensive documentation of learning are critical.

5. Non-deployment time has not been clearly optimized and more rigorous systems are required to more effectively use and demonstrate the added value.

Relevance/appropriateness

6. Overall interviews and document analysis indicate that the deployments were largely regarded as relevant and appropriate to the needs of nutrition emergencies.

7. CMAM and IYCF-E were regarded as appropriate to the technical needs of nutrition emergencies. However the assessment function is seen as too focused on SMART surveys and should respond to different assessment needs. SBC has been the least demanded function, due to a lack of awareness of its use in emergency settings.

8. Deployments rarely met the target of deploying within 72 hours due to factors external to the Tech RRT.

9. The type of support provided was relevant to the needs identified in each context, but not always deemed an appropriate role for the Tech RRT.

10. It is felt by informants that the Tech RRT’s role is to improve quality and scale of interventions with more “hands-on” support, rather than establishing the policy environment for interventions to operate.

11. The Tech RRT has largely been effective in making sure that the support provided does not duplicate with other mechanisms and UNICEF technical support.
12. There is a common understanding that the Tech RRT should be filling a gap in technical knowledge rather than a gap in personnel, however there is a grey area in between, and there are some examples of appropriate support where technical expertise does exist.

13. The Tech RRT provides high quality support through highly qualified advisors able to draw on experience in multiple contexts.

14. In all deployments analysed, Tech RRT advisors have successfully provided support to the collective.

15. Deployment durations were often over the target of “approximately 6 weeks”. The Tech RRT was found to be at times flexible in increasing this duration but also that the limitation sometimes reduced the ability of deployments to optimize support. The limitation is seen as a valuable metric to ensure the use of the Tech RRT is well known (and not requested as a gap filling resource).

16. With some exceptions, non-deployment has generally been poorly structured and monitored, and the efficiency and usefulness for building technical capacity has been varied.

17. There is little appetite amongst informants for expanding into additional sectors however strong support for nutrition sensitive programming, intersectoral work and nutrition response preparedness.

18. The Tech RRT is not well placed to do research itself but could take advantage of its unique position by identifying opportunities for new research, documenting learning and operationalizing new evidence-based approaches.

19. In general, informants felt that the Tech RRT was moderately well known globally.

20. Although the Tech RRT lacks a formalized communications plan, important efforts have been made to generate demand for the service.

Effectiveness

21. Deployments were largely effective in meeting the needs of the country programme as defined in the assignment ToR.

22. The monitoring and evaluation plan is effective in measuring the success of the project at the output level, but has no means to measure success at outcome or impact level.

23. The Tech RRT was found to coordinate very well at country level, and largely well at global level.

Efficiency
24. The Tech RRT consortium has functioned well with efficient governance systems and strong relationships between consortium members.

25. Standby Partnership Agreements between UNICEF and partner agencies have facilitated smooth deployments, but alternative arrangements (e.g. using the LoU) have been problematic.

26. On the whole, the deployment mechanism works well in enabling rapid deployments following requests, whilst ensuring appropriate engagement (at field level) and coordination (at global level).

27. Informants generally believed that there is a strong role for the Tech RRT under the organization and guidance of the NiE TAB. There is both an appetite for a common approach and also a desire to hold on to the successes of the Tech RRT.

Sustainability

28. Without on-going core funding, a cost recovery model seems to be the only available option for sustaining the Tech RRT in the long term. Despite some concerns, recent examples show that requiring a financial contribution from actors at field level is viable.
5. **Recommendations**

- How can the Tech RRT most effectively change to increase the speed, quality and effectiveness of technical support to nutrition emergencies?

Type of support

1. Re-focus the assessment function towards a broader assessment portfolio.

2. Put extra emphasis on learning what works for SBC in nutrition and how SBC can be used to optimize cross sector programming.

3. Continue to identify SBC profiles and invest in developing the SBC skill set of existing advisors.

4. Develop a pool of well-vetted consultants willing (if available) to deploy when Tech RRT or HST advisors are not available. This should be a diverse set of nutrition profiles with cross-sectoral expertise.

5. Provide increased clarity over the types of support the Tech RRT is able to provide, stressing the priority of improving the quality and scale of interventions, over the development of guidelines and strategies.

6. Continue to be flexible with deployment lengths and structures (for example using remote and short term follow up deployments) and adapt to the specific needs and capacity on the ground. However, ensure that longer deployments are only granted when the need is great in order to not unjustifiably reduce the availability of advisors to other emergencies.

7. Generate demand for nutrition sensitive programming in other clusters (such as WaSH, FSL and protection), particularly for IYCF-E, SBC and assessment.

8. Explore the opportunity of providing technical support in the implementation of the package of nutrition sensitive activities currently under development by the Inter-Cluster Nutrition Working Group.

9. Develop a suitable modality including type (e.g. training or contingency planning) and duration of work for Tech RRT to provide preparedness support. Identify opportunities for a permanent Tech RRT advisor to provide nutrition preparedness support to a specific country in order to build a portfolio to attract additional funding.

10. Develop support to advisors on identifying opportunities for the uptake of newly developed approaches, particularly for a combined protocol for SAM and MAM treatment, reduced follow-up for SAM treatment, *family MUAC* and iCCM + SAM. This could be in terms of
briefings on new approaches from researchers/experts or development of aids that include criteria of suitable programmes and the key evidence.

Deployment process

11. Discourage lengthy ToR development through the introduction of more robust measures (e.g. robust deadlines for ToR development) that are applied on a case-by-case basis.

12. Ensure all stakeholders expected to support or take part in the deployment and/or continue work after the deployment are engaged in the development of the ToR.

13. Extend the deadline of 72 hours from request to deployment for protracted emergencies but continue to develop systems to enable a deployment within 72 hours for rapid on-set emergencies.

14. Agree deployment in principle (with conditions if necessary) and finalize ToR as deployment process continues and even include the available option of agreeing a provisional ToR prior to deployment and finalizing in country.

15. Ensure the following 12 points for effective deployment are adhered to:

 I. Active engagement with partners in the development of ToRs
 II. Engagement in and ownership of work from partners
 III. Clear and achievable ToR for the given timeframe
 IV. Selection of individuals with the appropriate profile to be trained
 V. Chose effective training approach
 VI. Ensure appropriate timing of deployment
 VII. Prior to departure develop participatory action plan with resourced, time bound objectives and specific individuals identified, in order to ensure the continuation of activities after the deployment.
 VIII. Enable advisors to provide follow-up support remotely
 IX. Commitment from in-country partners to continue the work or follow up
 X. Identify required human resources to continue work after deployment
 XI. Identify required financing for on-going activities after deployment
 XII. Ensure recommendations and training are made available to as many partners as possible.

Non-deployment work

16. Introduce more robust management and monitoring systems to oversee non-deployment work and support advisor, to ensure non-deployment time is effectively used and documented.

17. Advisors should be available for three types of remote support: 1) global projects, 2) pre/post deployment support and 3) separate remote technical support. Remote technical
support should be aligned with the NiE TAB systems line of work “support in implementing existing guidance.”

Development of Tech RRT and coordination

18. Tech RRT is well placed to provide support to individual NGOs, whilst the NiE TAB is likely to prioritize support to the collective through the cluster. Efforts should be made to identify national/international NGOs with less technical strength and such organisations prioritized over organisations with access to in-house technical support.

19. As the NiE TAB is operationalized, the Tech RRT, GNC-CT, UNICEF and NGO co-leads should work closely to ensure Tech RRT is able to continue to function but in close coordination with the NiE TAB, to ensure all available resources in an emergency are optimized.

20. The Tech RRT should continue to function under the NiE TAB, focusing on provision of technical advice (remote technical advice) and provision of specialized technical expertise (through deployments), to technically weaker national/international NGOs.

21. UNICEF (country offices) should play a stronger role in linking weaker partners with further support such as the Tech RRT and allow these organisations to include technical support in PCA budgets.

22. Develop a formal partnership between the Tech RRT and the World Food Programme to facilitate access to partners in need of technical support and to develop expertise and a portfolio including MAM treatment, vitamin and mineral deficiencies, and other preventative measures suitable for emergency contexts.

Communications

23. Develop a comprehensive communications plan. This should be carefully considered alongside the ability of the Tech RRT to meet potential increase in demand and available funding. The communication plan should include:
 - Development of French, Spanish and Arabic communication materials
 - Targeting of disaster prone areas in West Africa, Asia and Americas
 - Collaboration with all UNICEF regional offices in the identification of need and generation of demand
 - Targeting of smaller, local and less established nutrition NGOs
 - Collaborate with WFP on identifying NGOs with a technical deficit
 - Include clear and explicit signposts to Tech RRT support on GNC and ENN, and any other relevant websites.

Monitoring, Evaluation and Learning

24. Develop a monitoring, evaluation and learning strategy that includes:
 - Clear definitions of impact and success
• Requirements to develop “impact pathways” for each deployment as part of the ToR. This should be an integral part of each deployment and be overseen by the advisor.
• Monitoring origin of requests and deployment process (time of receipt, time of ToR finalization, time of DSC approval, time of OFDA approval, time of departure)
• Monitoring of non-deployment work
• Aggregation of learning, achievements and failures of each deployment
• Identification of promising, proven and bad practices in every ToR
• Learning themes (e.g. integration of nutrition with other sectors or ways of working with stakeholders) in line with emerging evidence and evidence gaps
• Targets on numbers of learning products (best practices, case-studies, learning papers etc.)
• Simple tools for advisors to identify learning to then be developed in collaboration with field personnel during non-deployment time
• A process of aggregating learning and identifying areas for research and potentially linking to research initiatives such as the No Wasted Lives initiative
• Include health actors in indicator relating to number of actors trained

Programme Management and Sustainability

25. Provide additional programme management resource to allow for adequate resource to be dedicated to project development and demonstration of the Tech RRT’s added value.

26. Develop cost-recovery model including:
 • Financial forecast and budget with targets for income and numbers of deployments that can be fully funded
 • Criteria for funding deployments
 • Define thorough processes to optimize efficiency in each cost recovery arrangement; Include learning from external and internal processes
 • Widely communicate details of cost-recovery as soon as possible and added value of Tech RRT (over alternative arrangements)

27. Seek core funding with non-traditional donors
6. Annexes

The following annexes are included in a separate file.

Annex 1 List of non-deployment tasks
Annex 2 List of deployments (summary, thematic area, length, country etc.)
Annex 3 List of requests not fulfilled
Annex 4 Evaluation Work Plan
Annex 5 List of Informants
Annex 6 List of project documentation reviewed
Annex 7 Terms of Reference
Annex 8 Evaluation Matrix